Attachment A15

Detailed Site Investigation

PACIFIC EQUITY PARTNERS PTY LTD

Detailed Site Investigation

242-244 Young Street, Waterloo NSW

REPORT DISTRIBUTION

Detailed Site Investigation 242-244 Young Street, Waterloo NSW

El Report No.: E23915.E02_Rev0

Date: 18 October 2018

Copies		Recipient	
1	Soft Copy (PDF – Secured, issued by email)	Pacific Equity Partners Pty Ltd Level 1, 106 Alexander St, CROWS NEST NSW 2065	
	Original (Saved to Digital Archives)	El Australia Suite 6.01, 55 Miller Street, PYRMONT NSW 2009	

CHRIS SORDY

Engineering Geologist – Project Coordinator

NATHAN FOSTER

Senior Environmental Scientist

Revision	Details	Date	Amended By
0	Original	18 October 2018	-

© 2018 El Australia (El)

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by EI.

EXECUTIVE SUMMARY

Background

Pacific Equity Partners Pty Ltd engaged EI Australia (EI) to conduct a Detailed Site Investigation (DSI) for the former commercial property located at 242-244 Young Street, Waterloo NSW ('the site'). This environmental assessment was completed as part of a development application process through Inner West Council to allow site development for mixed residential apartment and commercial building with basement car parking.

Objectives

The main objectives of the assessment were to:

- Characterise site environmental conditions in relation to the nature, degree and sources of any soil, vapour and groundwater impacts;
- Target potentially impacted areas identified during the preliminary stages of the assessment for intrusive investigation;
- Understand the influence of site specific, geologic and hydrogeological conditions on the potential fate and transport of any impacts that may be identified;
- Evaluate potential risks that identified impacts may pose to human health and the environment;
 and
- Where site contamination is confirmed, provide data to assist in the selection and design of appropriate remedial options.

Findings

The work was conducted with reference to the regulatory framework outlined in **Section 1.3** of this report and assessment findings indicated the following:

- The site comprised an irregular shaped block covering a total area of approximately 4,500m². The site was bound by a construction site (north), Young Street (east), Powell Street (South) and Hunter Street (west).
- The site was free of statutory notices issued by the NSW EPA/DECC;
- SafeWork NSW records confirming the historical presence of UST's at this property. There is
 no information pertaining if the tanks have been removed from the site. There are some
 uncertainties of where some of the previous locations of the tanks mentioned are located.
- Soil sampling and analysis were conducted at ten (10) targeted test bore locations (BH1M, BH9M, BH10M and BH2-BH8) down to a maximum depth of 5.5 mBGL. Sampling regime was considered to be appropriate for investigation purposes and comprised a targeted sampling approach as a systematic sampling pattern could not be undertaken due to onsite obstructions;
- The sub-surface layers comprised a layer of granular and cohesive filling overlying cohesive residual soils, with sandstone bedrock below the residual soils;
- Groundwater was encountered during monitoring at depths ranging from 2.60 to 3.29 meters BTOC;

- Soil samples identified the following contaminants at concentrations above the adopted soil investigation levels:
 - o BH1M nickel, zinc, carcinogenic PAHs, F2 and F3
 - o BH9M zinc
 - o BH10M copper, lead and zinc
- Groundwater samples identified the following contaminants at concentrations above the adopted groundwater investigation levels:
 - BH1M & BH10M copper and zinc
- On review of the Preliminary Conceptual Site Model (CSM) developed as part of this ESA, it
 was concluded that the model remains valid for the proposed development.

Conclusions and Recommendations

Based on the findings of this report and with consideration of the Statement of Limitations (**Section 13**), El concludes that widespread contamination was not identified at the site.

It is concluded that the site can be remediated to a standard sufficient for proposed use of mixed commercial/retail and residential purposes as outlined in the proposed development plan. The remediation should follow demolition of the buildings and be undertaken in accordance with a remedial action plan to address the potential USTs that could be present onsite and any unknown or unexpected contamination identified during the demolition and excavation.

It is assumed that during the proposed construction of a basement level car park as part of the development, all fill and residual soil materials will be removed from the site, therefore in view of the above findings and in accordance with the NEPM 2013 guidelines, it is considered that the site will be made suitable for the proposed residential development on completion of the following recommendations:

- Conduct a Hazardous Materials Survey (HMS) of current site structures. El recommend that a HMS is conducted prior to demolition of site structures;
- An additional site investigation (ASI) should be undertaken to close additional data gaps identified during this investigation. This would include:
 - The re-purging of the groundwater monitoring wells is to be undertaken before an additional round of groundwater sampling collected and tested for contaminants of concern (including PFAS);
- A Remedial Action Plan (RAP) should be prepared in accordance with the NSW Office of Environment and Heritage (2011) Guidelines for consultants reporting on contaminated sites prior to the commencement of site works. The RAP will provide details of the methodology and procedures required for effective site remediation, which may include:
 - A site inspection is to be complete after demolition by a qualified environmental consultant, to determine if addition sources of environmental concern can be identified;

634

- GPRS survey is to be conducted to identify location of potential UST infrastructure onsite:
- Removal and validation of potential UST's present at the site. If no evidence of validation is available, further detailed investigation may be required to confirm the contamination status of the property and its suitability for residential land use;
- Additional soil sampling to confirm the absence of PFAS compounds within soil. If additional investigation indicate the presence of PFAS compounds, impacted soils should be removed and excavations validated;
- If additional groundwater sampling indicates the presence on contaminants at significantly elevated concentrations, three soil vapour wells should be installed at targeted locations across the site footprint, above the depth of groundwater, after the completion of demolition;
- Any material being removed from site (including virgin excavated natural materials (VENM)) should be classified for off-site disposal in accordance the EPA (2014) Waste Classification Guidelines;
- Any material being imported to the site should be assessed for potential contamination in accordance with NSW EPA guidelines as being suitable for the intended use or be classified as VENM;
- Preparation of an unexpected finds protocol for implementation following demolition and during site excavation to ensure any potential contamination sources (e.g. soil staining, asbestos) that maybe identified are managed in accordance with the NSW EPA legislation and guidelines; and
- Preparation of a final site validation report by a qualified environmental consultant, documenting the suitability of site environmental conditions for the proposed development.

635

CONTENTS

EXEC	UTIVE S	SUMMARY	ı
1.	INTROD	DUCTION	1
		ACKGROUND AND PURPOSE	1
		ROPOSED DEVELOPMENT	1
		egulatory Framework roject Objectives	1
		COPE OF WORKS	2
2.		ESCRIPTION	4
۷.		ROPERTY IDENTIFICATION, LOCATION, AND PHYSICAL SETTING	4
		URROUNDING LAND USE	4
		EGIONAL SETTING	5
	_	ROUNDWATER BORE RECORDS AND GROUNDWATER USE	6
_		TE WALKOVER INSPECTION	6
3.		OUS INVESTIGATIONS	8
		VAILABLE DOCUMENTS	8
4.		ONAL SITE HISTORICAL INFORMATION AND TITLES INFORMATION / HISTORIC AERIAL REVIEW	9
		URROUNDING LAND USE	12
		OUNCIL INFORMATION	13
	_	AFEWORK NSW DATABASE SEARCH	14
	4.5 EF	PA Online Records	14
5.			17
		HEMICAL HAZARDS AND CONTAMINATION SOURCES	17
		ER OR POLY-FLUOROALKYL SUBSTANCES (PFAS) MERGING CHEMICALS	17 18
		ONTAMINANTS OF POTENTIAL CONCERN	18
		OTENTIAL SOURCES, EXPOSURE PATHWAYS, AND RECEPTORS	19
	5.6 D/	ATA GAPS	21
6.			22
		ATA QUALITY OBJECTIVES (DQO)	22
	-	ATA QUALITY INDICATORS	26
7.			27
	_	AMPLING RATIONALE VESTIGATION CONSTRAINTS	27 27
		SSESSMENT CRITERIA	27
	-	DILINVESTIGATION	30
	7.5 G	ROUNDWATER INVESTIGATION	32
8.	DATA Q	QUALITY ASSESSMENT	34
9.	RESUL 1	ΤS	35
		OIL INVESTIGATION RESULTS	35
		ROUNDWATER INVESTIGATION RESULTS	36
4.0		ABORATORY ANALYTICAL RESULTS	37
10.	_		41
		EVIEW OF CONCEPTUAL SITE MODEL ONFIRMED POLLUTANT LINKAGES	41 41
11.	-		42
11. 12.			44 44
13.	SIAIEN	MENT OF LIMITATIONS	46

REFERENCES

ABBREVIATIONS

TABLES (In Text)
----------	----------

TABLE 2-1	SITE IDENTIFICATION, LOCATION, AND ZONING	4
TABLE 2-2	SURROUNDING LAND USES	5
TABLE 2-3	REGIONAL SETTING INFORMATION	5
TABLE 2-4	SUMMARY OF REGISTERED WATER BORES WITHIN 1 KM OF THE SITE	6
TABLE 3-1	SUMMARY OF PREVIOUS INVESTIGATION WORKS AND FINDINGS	8
TABLE 4-1	SUMMARY OF OWNER HISTORY	9
TABLE 4-2	SUMMARY OF AERIAL PHOTOGRAPH HISTORY	11
TABLE 4-3	SUMMARY OF AERIAL PHOTOGRAPH REVIEW	12
TABLE 4-4	SUMMARY OF ONLINE COUNCIL RECORDS	13
TABLE 4-5	SUMMARY OF SAFEWORK RECORDS	14
TABLE 4-6	PROPERTIES LISTED ON THE CONTAMINATED LAND RECORD	15
TABLE 4-7	LAND NOTIFIED TO NSW EPA	15
TABLE 4-8	POEO PUBLIC REGISTER ENTRIES	16
TABLE 5-1	PFAS DECISION TREE	17
TABLE 5-2	EMERGING OR CONTROLLED CHEMICALS	18
TABLE 5-3	CONCEPTUAL SITE MODEL	20
TABLE 6-1	SUMMARY OF PROJECT DATA QUALITY OBJECTIVES	23
TABLE 6-2	DATA QUALITY INDICATORS	26
TABLE 7-1	ADOPTED INVESTIGATION LEVELS FOR SOIL	28
TABLE 7-2	ASSESSMENT OF GROUNDWATER ENVIRONMENTAL VALUES	29
TABLE 7-3	ADOPTED INVESTIGATION LEVELS FOR GROUNDWATER	30
TABLE 7-4	SUMMARY OF SOIL INVESTIGATION METHODOLOGY	31
TABLE 7-5	SUMMARY OF GROUNDWATER INVESTIGATION METHODOLOGY	32
TABLE 9-1	GENERALISED SUBSURFACE PROFILE	35
TABLE 9-2	MONITORING WELL CONSTRUCTION DETAILS	36
TABLE 9-3	GROUNDWATER FIELD DATA	36
TABLE 9-4	SUMMARY OF SOIL ANALYTICAL RESULTS	37
TABLE 9-5	SUMMARY OF GROUNDWATER ANALYTICAL RESULTS	39
TABLE 10-1	POLLUTANT LINKAGES MODEL	41

TABLES

TABLE T1 SUMMARY OF SOIL ANALYTICAL RESULTS

TABLE T2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

FIGURES

FIGURE 1 LOCALITY PLAN

FIGURE 2 SAMPLING LOCATION PLAN

APPENDICES

APPENDIX A PROPOSED DEVELOPMENT PLANS

APPENDIX B GROUNDWATER BORE SEARCH

APPENDIX C SITE PHOTOGRAPHS

APPENDIX D HISTORICAL PROPERTY TITLES SEARCH

APPENDIX E BOREHOLE LOGS

APPENDIX F FIELD DATA SHEETS

APPENDIX G CHAIN OF CUSTODY AND SAMPLE RECEIPT FORMS

APPENDIX H LABORATORY ANALYTICAL REPORTS

APPENDIX I QA/QC ASSESSMENT

APPENDIX J LABORATORY QA/AC POLICIES AND DQOS

APPENDIX K SAFEWORK NSW RECORDS

1. INTRODUCTION

1.1 BACKGROUND AND PURPOSE

Mr John Wilkin of Bennet Murda Architects on behalf of Pacific Equity Partners Pty Ltd (the Client) engaged El Australia (El) to conduct a Detailed Site Investigation (DSI) for site characterisation at 242-244 Young Street, Waterloo NSW ('the site').

The site currently consists of a number of warehouse, office buildings and a car parking facility, which is located approximately 3.55 km south of the Sydney central business district (**Figure 1**). The site comprises multiple lots (Lot 1 in DP84655 and Lot A&B in DP161650) and is situated within the Local Government Area of City of Sydney Council, covering a total area of approximately 4,500 m², as depicted in the site aerial photo presented as **Figure 2**.

This assessment was conducted as part of an environmental due diligence process and this report is provided in support of a Development Application (DA) to City of Sydney Council and for the purpose of enabling the developer to meet its obligations under the *Contaminated Land Management Act 1997* (CLM Act), for the assessment and management of contaminated soil and/or groundwater.

There has been a previous environmental site investigation conducted by SGA Environmental (Ref. Project No 93099, Dated September 2012). It is important to note that the report only was for the northern allotment of the site (Lot 1 in DP84655).

1.2 PROPOSED DEVELOPMENT

Based on development plans supplied by the Client, EI understands that the proposed redevelopment will include the demolition of existing structures and construction of a multi-storey mixed use structure (school, residential, and commercial/retail) overlying a basement car park.

Plans of the proposed development are included in **Appendix A**.

1.3 REGULATORY FRAMEWORK

The following regulatory framework and guidelines were considered during the preparation of this report:

- ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality;
- DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination;
- EPA (1995) Sampling Design Guidelines;
- EPA (2017) Guidelines for the NSW Site Auditor Scheme (3rd Edition);
- NEMP (2018) PFAS National Environmental Management Plan;
- NEPC (2013) Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater,
- NEPC (2013) Schedule B(2) Guideline on Site Characterisation;
- Contaminated Land Management Act 1997;
- State Environment Protection Policy 55 (SEPP 55) Remediation of Land, and

OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites.

1.4 PROJECT OBJECTIVES

The primary objectives of this investigation were therefore to:

- Evaluate the potential for site contamination on the basis of historical land uses, anecdotal and documentary evidence of possible pollutant sources;
- To investigate the degree of any potential contamination by means of limited intrusive sampling and laboratory analysis, for relevant contaminants; and
- Where site contamination is confirmed, make recommendations for the appropriate management of any contaminated soils and/or groundwater.

1.5 SCOPE OF WORKS

In order to achieve the above objectives, the scope of works was as follows:

1.5.1 Desktop Study

- A review of relevant topographical, geological, hydrogeological and soil landscape maps for the project area;
- Review of the previous site investigation report prepared by SGA (2012).
- Search of historical aerial photographs archived at NSW Land and Property Information to review previous site use and the historical sequence of land development in the neighbouring area;
- A land titles search, also conducted through NSW Land and Property Information for information relating to historical ownership of the site;
- A search of City of Sydney Council records for information relating to operational site history and/or relevant environmental incidents:
- A search of NSW EPA Land Information records under the Contaminated Land Management Act 1997 and Protection of the Environment Operations Act 1997;
- A search of the Stored Chemical Information Database (SCID) and microfiche records held by SafeWork NSW relating to possible underground tank approvals and locations, and dangerous goods storages; and
- A review of existing underground services on site.

1.5.2 Field Work & Laboratory Analysis

- A detailed site walkover inspection;
- Drilling of boreholes at ten locations (BH1 to BH10) across the un-investigated accessible areas
 of the site. It is noted that ten boreholes were proposed as part of the site investigation, in
 accordance with the minimum sampling protocol recommended under EPA (1995);

- Construction of two groundwater monitoring bores (to a maximum depth of 9 m) in hydraulically up-gradient and down-gradient locations onsite. Groundwater monitoring bores will be constructed to standard environmental protocols to investigate the potential for groundwater contamination, and migration of contaminants off-site;
- Multiple level soil sampling within fill and natural soils and one round of groundwater sampling
 from the constructed groundwater monitoring bores. Two monitoring wells installed by SGA
 (2012) will also be used for groundwater sampling purposes; and
- Laboratory analysis of selected soil and groundwater samples for relevant analytical parameters as determined from the site history survey and field observations during the investigation programme.

1.5.3 Data Analysis and Reporting

A DSI report would also be prepared to document desk study findings, the conceptual site model, data quality objectives, investigation methodologies and results. The report would also provide a record of observations made during the detailed site walkover inspection, borehole and monitoring well construction logs and a discussion of laboratory analytical results in regards to potential risks to human health, the environment and the aesthetic uses of the land.

2. SITE DESCRIPTION

2.1 Property Identification, Location, and Physical Setting

The site identification details and associated information are presented in **Table 2-1**, while the site locality is shown in **Figure 1**.

Table 2-1 Site Identification, Location, and Zoning

Attribute	Description	
Street Address	242-244 Young Street, Waterloo NSW	
Location Description	Approx. 3.55 km south of Sydney CBD, an irregular shaped block bound by a construction site (north), Young Street (east), Powell Street (South) and Hunter Street (west).	
Site Coordinates	Northeast corner of site (GDA94-MGA55):	
	Easting: 334332.297	
	Northing: 6247371.091	
	(Source: http://maps.six.nsw.gov.au)	
Site Area	Approx. 4,500 m ²	
	(Source: http://maps.six.nsw.gov.au)	
Site Owner	Pacific Equity Partners Pty Ltd	
Lot and Deposited Plan (DP)	Lot 1 in DP84655 and Lot A&B in DP161650	
State Survey Marks	Two State Survey Marks (SSM) are situated in close proximity to the site: SS53805 on McEvoy Street and SS16632 on the corner of Young Street and McEvoy Street	
	(Source: http://maps.six.nsw.gov.au)	
Local Government Authority	City of Sydney Council	
Parish	Alexandria	
County	Cumberland	
Current Zoning	B4 – Mixed Use	
	(Sydney Local Environment Plan, 2012)	
Current Land Uses	A number of warehouse, office buildings and a car parking facility	

2.2 Surrounding Land Use

The site is situated within an area of mixed land uses and current uses. Current uses of surrounding land are described in **Table 2-2**.

Table 2-2 Surrounding Land Uses

Direction Relative to Site	Land Use Description
North	Residential apartment blocks (under construction).
East	Young Street, followed by commercial properties.
South	Powell Street, followed by high density residential properties.
West	Powell Street, followed by high density residential properties.

2.3 REGIONAL SETTING

Regional topography, geology, soil landscape and hydrogeological information are summarised in **Table 2-3**.

Table 2-3 Regional Setting Information

Attributo	Description
Attribute	Description
Topography	The site generally lies flat, with a slight decline to the south west, towards Hunter Street (Ref. http://maps.six.nsw.gov.au)
Site Drainage	Site drainage is expected to be collected by an installed drainage system which discharges to the public wastewater network. The public network is expected to flow south-west towards Sheas Creek.
Regional Geology	The site directly overlies medium to fine grained "marine" sand with podsols, which is characterised by the deposits forming the Botany Sands (Ref. Geological Map Sydney 1:100,000 Geological Series Sheet 9130 DMR 1991).
	With reference to the Geological Survey of NSW Bulletin No.18 by R.J Griifin (1963), the site is located on aeolian dune sands associated with the Botany Basin. The site runs parallel to Cross Section 6, which shows a sequence of sands over fissured clays over Hawkesbury Sandstone. The Botany Basin basement contour map indicates the top of rock to be greater than 30 m.
	It is noted that the site is located within the Botany Sand Aquifer and the Botany Groundwater Management Zone 2 which bans domestic groundwater use.
Soil Landscapes	The Soil Conservation Service of NSW Soil Landscapes of the Sydney 1:100,000 Sheet (Chapman and Murphy, 1989) indicates that the site overlies an Aeolian Landscape – Tuggerah, which typically includes gently undulating to rolling coastal dune fields. It generally comprises deep (>2.0 m) red and brown podzolic soils on dunes and podzol/ humus podzol intergrade soils on swales
Acid Sulfate Soil Risk	With reference to the Botany Bay Acid Sulfate Soil Risk Map (1:25,000 scale; Murphy, 1997), the subject land lies within the map class description of <i>No Known Occurrence</i> . In such cases, acid sulfate soils (ASS) are not known or expected to occur and "land management activities are not likely to be affected by ASS materials".
	The Sydney Local Environmental Plan 2012- Acid Sulfate Soils Risk Class 1:1,000 scale Map indicates that the site lies within a <i>Class 5</i> ASS area. Council consent is therefore required prior to commencing any works within 500 m of Class 1, 2, 3 or 4 land, with a ground elevation of below 5 m Australian Height Datum (AHD) and where the water table is likely to be lowered below 1 mAHD on adjacent Class 1, 2, 3 or 4 land.
Likelihood & Depth of Filling	Fill materials are expected to be present at varying depths across the site associated with levelling of the site during construction of the existing structures.

Attribute	Description
Typical Soil Profile	The typical soil profile is expected to comprise fill materials of varying depths overlying cohesive residual soils on shale bedrock.
Depth to Groundwater	Based on previous investigations on the site conducted by SGA (2012), the average depth to groundwater is anticipated to be approximately 3.05 mBGL.
Groundwater Flow Direction	In view of the local topography, groundwater flow direction in the vicinity of the site is inferred to be towards Sheas Creek located approximately 800 m south-west of the site.
Nearest Surface Water Feature	Sheas Creek located approximately 800 m south-west of the site which then flows into Alexandra Canal. It is understood that Alexandra Canal is tidally influenced and is considered to be a marine system for impact assessment purposes.

2.4 GROUNDWATER BORE RECORDS AND GROUNDWATER USE

An online search of registered groundwater bores was conducted by EI on the 3 September 2018 through the NSW Office of Water (Ref. http:// realtimedata.water.nsw.gov.au/water.stm). There were 84 registered bores within about 500m of the site. A summary of the closest registered bores is presented with selected details in **Table 2-4**. A bore location plan and detailed information regarding the listed bores is attached in **Appendix B**.

Table 2-4 Summary of Registered Water Bores within 1 km of the site

Bore No.	Date Drilled	Drilled Depth (m)	SWL*/Salinity/Yield	Bore Purpose
GW111959	07/08/2012	6.00	2.60/ - / -	Monitoring
GW111960	07/08/2012	6.00	3.52/ - / -	Monitoring
GW109745	02/08/2002	3.50	-	Monitoring

Notes:

- Data not recorded;
- * SWL Standing water level measured in mBGL,

Salinity - units unspecified,

Yield - measured in L/s.

All of the boreholes identified in close proximity were identified to be used for monitoring purposes. Most of the water bore did not contain information on drilled depth, standing water level, salinity and yield. The drilled bore depths ranged between 6.00 m and 6.50 mBGL. Standing water levels from bores ranged from 2.60 and 3.52 mBGL.

In view of the above information, and the fact that a reticulated water supply is available in the area, it is unlikely that groundwater extraction for beneficial domestic use is taking place in the locality.

2.5 SITE WALKOVER INSPECTION

El staff made a number of observations during a detailed site inspection on 31 July 2018. The recorded observations are summarised below:

 The site was used for various commercial purposes, including an engineering workshop, office buildings, and a film school (Photos 1);

- A workshop, located in the central portion of the site, was utilised for the manufacturing of engineering materials (Photo 2);
- Soil landscaping/vegetation were present on site. Soil in the southern portion of the site were
 observed to be overall healthy and showed no signed of distressed. However, soil located in
 the eastern portion of the site appears to be unhealthy, due to vehicle parking on top of
 vegetation (Photos 2 and 3);
- Concrete floor slabs & pavements on site were in poor to moderate condition with cracks, staining noted and discrepancies (Photo 4);
- Evidence indicative of underground petroleum storage systems (UPSS) or above ground storage tanks (AST) was not observed in accessible site areas during the inspection; and
- Previous installed groundwater monitoring wells were located during the inspection. These
 wells relate to previous investigation by SGA (2012) (Photo 5).

Photographs from the site walkover inspection are included in **Appendix C**.

3. PREVIOUS INVESTIGATIONS

3.1 AVAILABLE DOCUMENTS

The following investigations have been previously conducted for the site:

SGA (2012) Environmental Site Investigation. Ref. 93099, dated September 2012.

A summary works and key findings is outlined in **Table 3-1**.

Table 3-1 Summary of Previous Investigation Works and Findings

Table 3-1 Summary of Previous Investigation Works and Findings		
Assessment Details Project Tasks and Findings		
Environmental Site Inves	stigation (SGA, 2012)	
Scope of Works	 Review of a previous SESL Preliminary Site Investigation report. Drilling of six boreholes on a grid pattern, and collected of soil samples. Installation and sampling of two groundwater monitoring wells. Laboratory analysis of samples for asbestos, heavy metals, petroleum hydrocarbons, mono aromatic hydrocarbons (including benzene, toluene, ethyl benzene and xylene), and polycyclic aromatic hydrocarbons (PAHs). Provision of a report detailing the findings of the field investigation and the laboratory results. 	
Investigation Findings and Conclusions	 Historical records indicated that site was former used as a foundry. Review of the report has observed some site history information to be missing from the investigation report. Additional site history information has been provided in Section 4. Concentrations of copper, lead, C₁₀-C₃₆ petroleum hydrocarbons, polycyclic aromatic hydrocarbons (including benzo(a)pyrene) were identified within fill material across the site exceeding NEPC (1999) commercial/industrial guidelines. SGA concluded that chemicals of concern would not preclude continued commercial use if foreseeable exposure is appropriately managed (i.e. via a site 	
	 aromatic hydrocarbons (including benzo(a)pyrene) were identified material across the site exceeding NEPC (1999) commercial/index SGA concluded that chemicals of concern would not preclude content of the state of t	

4. ADDITIONAL SITE HISTORICAL INFORMATION

4.1 LAND TITLES INFORMATION / HISTORIC AERIAL REVIEW

A historical land titles search was conducted through Legal Liaison Searching Services Pty Ltd. Copies of relevant documents resulting from this search are presented in **Appendix D**. A summary of all the previous and current registered proprietors (**Table 4-1**), along with information obtained from the available historical aerial photographs, in relation to past potential land uses (**Table 4-2**). The historical aerial photographs reviewed as part of this ESA included:

- 1930: February 1930, Run 16, Map 3428 B/W
- 1943: Sydney 1943 Imagery (source : http://maps.six.nsw.gov.au/)
- 1951: May 1951, Run 15, Map 467 28 B/W Lands Photo
- 1961: Run 37E Map 1042 B/W, Cumberland 1961 series NSW 5156 Lands Photo
- 1986: 02 August 1986, Run 24E, Map 115 NSW 3527 Land and Property Information
- 1994: 4 October 1994, Run 11, Map 153-164 Land Information Centre
- 2004: 08 October 2004, Run 7, Map 14-25, NSW 4877 Department of Land

Table 4-1 Summary of Owner History

Date of Acquisition and term held	Registered Proprietor(s) & Occupations (where documented)		
As regards Lot 1 D.P. 84655			
08.08.1912 (1912 to 1940)	James Hunter and Sons Limited Now James Hunter & Sons Pty. Limited		
18.03.1940 (1940 to 1968)	Gordon Marr & Sons Pty. Limited		
01.11.1968 (1968 to 1986)	P. Rowe Pty Limited		
27.05.1986 (1986 to 1986)	Leda Holdings Pty Limited		
03.11.1986 (1986 to 1991)	Baese Pty. Limited		
29.01.1991 (1991 to 1998)	Tridu Pty. Limited		
20.05.1998 (1998 to 2013)	Coates Signco Manufacturing Pty Limited Now Alan Coates Pty Limited		

Date of Acquisition and term held	Registered Proprietor(s) & Occupations (where documented)
04.01.2013 (2013 to Date)	# International Screen Academy Property Pty Ltd

Easements: -

28.07.1986 (D.P. 638902) – Easement for Support

Leases: -

- 01.11.1968 (L301856) Gordon Marr & Sons Proprietary Limited expired 17.05.1979
- Numerous leases were found from 29.01.1991 to 30.11.2010 that have since expired due to effluxion of time, or have been surrendered these have not been investigated
- 16.05.2013 (AH734086) International Screen Academy Property Pty Limited of 242 Young Street, Waterloo expires 17.12.2015
 - 26.07.2016 (AK625515) expiry date now 31.12.2017

As regards Lot A D.P. 161650			
08.08.1912 (1912 to 1956)	James Hunter and Sons Limited Now James Hunter & Sons Pty. Limited		
10.05.1956 (1956 to 1968)	Gordon Marr & Sons Pty. Limited		
01.11.1968 (1968 to 1982)	P. Rowe Pty Limited		
16.03.1982 (1982 to 1989)	Perpetual Trustee Company Limited		
16.03.1989 (1989 to 1995)	John Malcolm Sandilands Beverley Ann Sandilands		
02.03.1995 (1995 to 1998)	Beverley Ann Sandilands		
23.04.1998 (1998 to Date)	# Charvic Pty Limited		

Easements: -

- 28.07.1986 (D.P. 638902) Easement for Support
- 28.07.1986 (D.P. 638902) Easement for Maintenance of Gutter

Leases: -

- 01.11.1968 (L301856) Gordon Marr & Sons Proprietary Limited expired 17.05.1979
- 01.07.1982 (T72760) P. Rowe Pty Limited expired 15.09.1988
- 15.09.1988 (X837002) P. Rowe Fabrics Pty. Limited surrendered 06.05.1994
- 06.05.1994 (U241772) expired due to effluxion of time, or has been surrendered this has not been investigated
- 20.12.2007 (AD653553) expired due to effluxion of time, or has been surrendered this has not been investigated
- 19.05.2017 (AM405465) Paramount Property Group Pty Limited of Factory, 244 Young Street, Waterloo
 together with 38 on-site parking spaces numbered 1–38. expires 01.04.2002 option of renewal 2 years

Date of Acquisition and term held	Registered Proprietor(s) & Occupations (where documented)			
As regards Lot B D.P. 161650				
08.08.1912 (1912 to 1966)	James Hunter and Sons Limited Now James Hunter & Sons Pty. Limited			
28.01.1966 (1966 to 1982)	P. Rowe Pty Limited			
16.03.1982 (1982 to 1989)	Perpetual Trustee Company Limited			
16.03.1989 (1989 to 1995)	John Malcolm Sandilands Beverley Ann Sandilands			
02.03.1995 (1995 to 1998)	Beverley Ann Sandilands			
23.04.1998 (1998 to Date)	# Charvic Pty Limited			

Easements: -

- 01.04.2009 (D.P. 1136961) Easement for Electricity and Other Purposes 3.365 metre(s) wide
- 01.04.2009 (D.P. 1136961) Right of Carriageway 6.8 metre(s) wide

Leases: -

- 01.07.1982 (T72760) P. Rowe Pty Limited expired 15.09.1988
- 15.09.1988 (X837002) P. Rowe Fabrics Pty. Limited surrendered 06.05.1994
- 06.05.1994 (U241772) expired due to effluxion of time, or has been surrendered this has not been investigated
- 20.12.2007 (AD653553) expired due to effluxion of time, or has been surrendered this has not been investigated
- 19.05.2017 (AM405465) Paramount Property Group Pty Limited of Factory, 244 Young Street, Waterloo
 together with 38 on-site parking spaces numbered 1–38. expires 01.04.2002 option of renewal 2 years

Notes: # Denotes Current Registered Proprietor

Table 4-2 Summary of Aerial Photograph History

	Site description based on historical aerial photographs	Land use
1930 20 February 1930	Due to the resolution of the 1930 photo, individual buildings cannot be distinguished. The site appeared to be utilised as a commercial buildings across the majority of the site. There were buildings located in the southern portion and the northern portion of the site.	Commercial
1943 Six Maps https://maps.six.nsw.gov.au	The site appears unchanged from the previous aerial photograph, with the exception of buildings along the northern portion of the site being redeveloped and a single building being constructed along the northern portion of the site.	-
1951 May 1951	The site appeared unchanged from the previous aerial photograph.	-

	Site description based on historical aerial photographs	Land use
1961	The site appeared unchanged from the previous aerial photograph.	
1986 2 August 1986	The site appeared unchanged from the previous aerial photograph, with the exception of vacant land in the central portion of the site, being developed with buildings and inferred to be used for commercial purposes.	_
1994 4 October 1994	The site appeared unchanged from the previous aerial photograph.	_
2004 8 October 2004	The site appeared unchanged from the previous aerial photograph.	_
2016 Six Maps https://maps.six.nsw.gov.au	The site appeared unchanged from the previous aerial photograph.	

In summary, review of land titles records and historic aerial photography showed that a commercial development occupied the northern and southern portion of the site since the 1930s. There have been slight alterations to the building since that time but the site has always remained of the same nature till the current date.

4.2 SURROUNDING LAND USE

As part of the review, an assessment of surrounding land uses using historical aerial photographs sourced from NSW Land and Property Information was carried out. A summary of the pertinent information identified at surrounding land parcels from the reviewed photographs is presented in **Table 4-3**.

Table 4-3 Summary of Aerial Photograph Review

Aerial Photograph	Surrounding land uses based on historical aerial photographs	
1930 20 February 1930	Site surroundings were predominantly commercial/industrial in nature. There were some residential buildings located further north-west and south east of the site.	
1943 Six Maps https://maps.six.nsw.gov.au	Surrounding land use remained primarily unchanged from the previous aerial photograph.	
1951 May 1951	Surrounding land use remained primarily unchanged from the previous aerial photograph.	
1961	Surrounding land use remained primarily unchanged from the previous aerial photograph.	
1986 2 August 1986	Surrounding land use remained primarily unchanged from the previous aerial photograph, except for the redevelopment of residential land to commercial use to the south-east of the site.	
1994 4 October 1994	Surrounding land use remained primarily unchanged from the previous aerial, with the exception of the commercial buildings, adjacently north being redeveloped for high density residential purposes.	
2004 8 October 2004	Surrounding commercial properties to the south and west have been redeveloped and predominantly used for high density residential purpose	

Aerial Photograph	Surrounding land uses based on historical aerial photographs		
2016 Six Maps https://maps.six.nsw.gov.au	Surrounding land use remained primarily unchanged from the previous aerial photograph.		

4.3 COUNCIL INFORMATION

An application to access records held by City of Sydney Council was initiated relating to the site was requested by EI, on behalf of the Client. Correspondence has not been during the time of writing of this report. Should pertinent information be identified from council, an addendum to the PSI will be prepared and issued.

However, a check of the Sydney of City Planning street cards identified some development and alterations that occurred on the site. A summary of the Development Applications can be seen in **Table 4-4**.

Table 4-4 Summary of Online Council Records

Reference	Date	DA Application Information
45-1	7-10-32	Refurbish existing building.
41-3-1273	10-09-36	Site usage for sign storage and fabrication of sign prototypes.
2181-55	2-12-55	Reconstruct roof.
148-1-62	27-2-62	Use of premises for the cleaning of drum reconditioners.
435-62	27-2-62	Replace roof.
290-63	15-2-63	Alterations to building.
1014-63	8-5-63	Fire escape stairs.
1228-63	7-6-63	Extension of roof.
1336-63	20-6-63	Septic tank.
2828-63	9-12-63	Alterations
2128-64	4-10-64	Reinstatement after fire.
155-1-65	8-3-65	Construction of vehicles crossing.
212-65	10-3-65	Use of preemies for soap manufacturing.
982-65	1-12-65	Erection of warehouse building offices, alterations and amenities.
544-66	15-3-66	New building warehouse.
87-73	5-3-73	Erection of warehouse building/offices/showroom and amenities.
45-84-5147	28-3-84	Upgrading fire egress & protection
45-86-2103	-	Refurbish building and mezzanine.
45-88-0224	-	Erection of pylon sign and flush wall.

Reference	Date	DA Application Information	
210-62	-	Installation of equipment for the cleaning of tallow drum.	

4.4 SAFEWORK NSW DATABASE SEARCH

A search of SafeWork NSW dangerous goods records was completed as part of this assessment. Correspondence from SafeWork NSW revealed that the following records pertaining to the premises were held, with details as described in **Table 4-5** (correspondence attached in **Appendix K**).

Table 4-5 Summary of SafeWork Records

Licence Holder / Premises	Type of Infrastructure	Goods Stored	Quantity	Location of storage	Status
P. Rowe Fabrics Pty Ltd/ corner of Powell & Young Street, Waterloo NSW 2017 Dated: 24-10-1988	Underground Tank	Petrol	10,000 L	North eastern portion of the site (See Figure 3)	Unknown
P. Rowe Fabrics Pty Ltd/ corner of Powell & Young Street, Waterloo NSW 2017	Underground Tank	Mineral Spirit	10,000 L	-	Unknown
Dated: 09-06-1975	Brick-Concrete Storage Facility (unknown if above or below ground storage)	Mineral Oil	10,000 L	-	Unknown
		Class 3 Material (Nitro-Cellouse)	2 x 2,500 kg	-	Unknown

Land title searches revealed the property located at the site to have been previously owned by P. Rowe Pty Ltd, with SafeWork records confirming the historical presence of UST's at this property. There is no information pertaining if the tanks have been removed from the site. There are some uncertainties of where some of the previous locations of the tanks mentioned are located.

4.5 EPA ONLINE RECORDS

On 6 September 2018, an on-line search of the contaminated land public record of NSW Environment Protection Authority (EPA) Notices was conducted. The contaminated land public record is a searchable database of:

- Orders made under Part 3 of the Contaminated Land Management Act 1997 (CLM Act);
- Approved voluntary management proposals under the CLM Act that have not been fully carried out and where the approval of the EPA has not been revoked;
- Site Audit Statements provided to the EPA under Section 53B of the CLM Act that relate to significantly contaminated land;
- Where practicable, copies of any documentation formerly required to be part of the public record; and
- Actions taken by the EPA under Sections 35 and 36 of the Environmentally Hazardous Chemicals Act 1985.

This search confirmed that the NSW OEH had no regulatory involvement in relation to the area of investigation. Properties in proximity to the site which the NSW OEH have been involved with area listed in **Table 4-5**.

Table 4-6 Properties listed on the contaminated land record

Name & Address of Property	Distance & Direction from Site	CLR Entries	Associated Contaminants
887-893 Bourke Street, Waterloo	400 m SE	2005 – Declaration of remediation site2016 – Notice to end significantly contaminated land declaration	Groundwater – PCE, TCE, DCE, and vinyl chloride

A search through the List of NSW Contaminated Sites notified to the EPA under Section 60 of the CLM Act 1997 was also conducted on 6 September 2018. This list is maintained by NSW EPA and includes properties on which contamination has been identified. Not all notified land is deemed to be impacted significantly enough to warrant regulation by the EPA. The subject site has not been notified as contaminated to the EPA. Properties in proximity to the site which have been notified to the EPA are listed in **Table 4-6**.

Table 4-7 Land notified to NSW EPA

Suburb	Description and Address	Activity that caused contamination	Distance and direction from site	EPA site management class
Waterloo	Diversity Waterloo 1-13 Archibald Avenue	Other Industry	210 m E	Under Assessment
Waterloo	Iconic (Former Chubb Factory) Waterloo 830-838 Elizabeth Street	Other Industry	180 m SW	Regulation under CLM Act not required
Waterloo	Lawrence Dry Cleaners 887-893 Bourke Street	Unclassified	400 m SE	Contamination currently regulated under CLM Act

A search of the Protection of the Environment Operations (POEO) Act public register, regarding environmental protection licences, applications, notices, audits, pollution studies, and reduction programmes, did not identify any record for the site. Records were identified for sites in proximity of the application site, and these are shown in **Table 4-7**.

653

Table 4-8 POEO public register entries

Suburb	Description and Address	Distance and direction from site	Activity type	POEO Records
Waterloo	Heidelberg Graphic Equipment Limited 50 O'Dea Avenue	460m SE	Hazardous, Industrial or Group A Waste Generation or Storage	POEO Licence, Licence variations
Waterloo	Lawrence Dry Cleaners	400m SE	Hazardous, Industrial or Group A Waste Generation or Storage	POEO Licence, Licence variations

5. CONCEPTUAL SITE MODEL

In accordance with NEPM (2013) *Schedule B2 – Guideline on Site Characterisation* and to aid in the assessment of data collection for the site, EI developed a preliminary conceptual site model (CSM) assessing plausible pollutant linkages between potential contamination sources, migration pathways, and receptors. The CSM provides a framework for the review of the reliability and useability of the data collected and to identify data gaps in the existing site characterisation.

5.1 CHEMICAL HAZARDS AND CONTAMINATION SOURCES

On the basis of site history and search findings described by DLA (2014) (**Section 3**), El consider potential chemical hazards and onsite contamination sources to be as follows:

- Imported fill soils of unknown origin distributed across the site;
- Impacts from previous commercial industrial activities at the site;
- Painted surfaces in relation to the structures (buildings) that are currently present on the site;
- Hazardous materials, including potential asbestos-containing materials (ACM) from building products;
- Historical application of pesticides;
- Deeper, natural soils containing residual impacts, representing potential secondary sources of contamination; and
- Migrating contaminants from offsite sources.

5.2 PER OR POLY-FLUOROALKYL SUBSTANCES (PFAS)

The NSW EPA (2017) Auditor Guidelines require that PFAS substances are considered in assessing contamination. EI use the following Decision Tree (**Table 5-1** below) based on EnRisk (2016) for prioritising the potential for PFAS compounds being present on Site and whether PFAS sampling of soil and water is required.

Table 5-1 PFAS Decision Tree

Preliminary Screening	Probability	
Did fire training occur onsite?	Low	
Did fire training occur, or is an airport or fire station up-gradient of or adjacent to the Site? 1	Low	
Have "fuel" fires ever occurred onsite? e.g. ignition of fuel (solvent, petrol, diesel, kero) tanks?	Low Insufficient site history information available	
Have PFAS been used in manufacturing or stored on-Site ? ²	Medium Previous operations included fabric industry use, which are known to use products that may contain PFAS. A large store of nitrocellulose lacquer was noted in Safework records, which could be a possible point source of contamination.	

Preliminary Screening	Probability
If Yes to any questions, has site analytical suite been optimised to include preliminary sampling and testing for PFAS in soil (ASLP Testing) and water?	See Section 10 for commentary

- Note 1 Runoff from fire training areas may impact surface water, sediment and groundwater.
- Note 2 PFAS is used wide range of industrial processes and consumer products, including in the manufacture of non-stick cookware, specialised garments and textiles, Scotchguard[™] and similar products (used to protect fabric, furniture, leather and carpets from oils and stains), metal plating and in some types of fire-fighting foam (https://www.nicnas.gov.au/chemical-information/factsheets/chemical-name/perfluorinated-chemicals-pfas)

Although the PFAS decision tree does not identify the need to include PFAS within the testing suite, aerial photography analysis (DLA, 2014) indicates that part of the site may have burnt down. As such, it is considered likely that fire fighting foams were applied to the site and, as such, PFAS are included within the COPC (**Section 4.4**).

5.3 EMERGING CHEMICALS

The NSW EPA uses Chemical Control Orders (CCOs) as a primary legislative tool under the EHC Act (1985) to selectively and specifically control particular chemicals of concern, and limit their potential impact on the environment. CCOs provide the EPA a rapid and flexible mechanism for responding to emerging chemical issues. As with PFAS compounds, EI has considered chemicals controlled by CCOs and other potential emerging chemicals in this assessment as outlined in **Table 5-2** below.

Table 5-2 Emerging or Controlled Chemicals

Chemicals of Concern (CCO or emerging)	Decision	
Were aluminium smelter wastes used or stored on Site (CCO, 1986)?	No	
Do dioxin contaminated wastes (CCO, 1986) have the potential to impact the Site? 1	No	
Were organotin products (CCO, 1989) used or stored on Site? ²	No	
Were polychlorinated biphenyls (PCBs) used or PCB wastes (CCO, 1997) stored on-Site? 3	Yes If PCB containing pesticides were used onsite	
Were scheduled chemical or wastes (CCO, 2004) used or stored ⁴	Yes If OC pesticides were used onsite	
Are other emerging chemicals suspected? 5	No	
If Yes to any questions, has the site sampling suite been optimised to include specific sampling for other chemicals of concern in soil, air, and water	Yes	

- Note 1 From burning of certain chemicals, smelting or chemical manufacturing or fire on or near the Site.
- Note 2 From anti-fouling paints used or removed at boat & ship yards and marinas.
- Note 3 From older transformer oils & electrical capacitors
- Note 4 Twenty-four mostly organochlorine pesticides and industrial by-products
- Note 5 Other chemicals considered as emerging e.g. 1,4 dioxane (associated with some cVOCs).

5.4 CONTAMINANTS OF POTENTIAL CONCERN

Based on the findings of the site contamination appraisal the contaminants of potential concern (COPC) at the site are considered to be:

Soil – heavy metals (HMs), petroleum hydrocarbons (TRHs, BTEX compounds), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOC), including chlorinated VOC (VOCC), organochlorine and organophosphate pesticides (OCP/OPP), polychlorinated biphenyls (PCB), Per- and Polyfluoroalkyl Substances (PFAS), and asbestos.

 Groundwater – HMs, TRH, BTEX, PAH, VOCs and VOCCs (such as trichloroethene (TCE)), and PFAS.

5.5 POTENTIAL SOURCES, EXPOSURE PATHWAYS, AND RECEPTORS

Potential contamination sources, exposure pathways and human and environmental receptors that were considered relevant for this assessment are summarised along with a qualitative assessment of the potential risks posed by complete exposure pathways in **Table 5-3**.

Table 5-3 Conceptual Site Model

Potential Sources	Potential Contaminants	Sensitive Receptor	Migration & Exposure Pathways
Imported Fill	HM, TRH, PAH, BTEX,	Site Workers during demolition and construction	Dermal Contact
	OCP/OPP, PCB, Asbestos	Future site residents	Ingestion
		Adjacent land users	Inhalation
		Groundwater	Seepage into the subsurface soils, bedrock, and groundwater.
Historical and present site uses	HM, TRH, PAH, BTEX,	Site Workers during demolition and remediation.	Dermal Contact
(Including a chemical manufacturer,	VOC, Asbestos	Future site residents	Ingestion
plastic manufacturer, metal recycler)	cler)	Adjacent site users	Inhalation
		Groundwater	Seepage into the subsurface soils, bedrock, and groundwater.
Painted surfaces on existing	HM (Lead)	Site Workers during demolition and construction	Dermal Contact
structures		Future site residents	Ingestion
		Adjacent site users	Inhalation
		Groundwater	Seepage into the subsurface soils, bedrock, and groundwater.
Deleterious materials within the	Asbestos	Site Workers during demolition and construction	Dermal Contact
existing structures		Future site residents	Ingestion
		Adjacent site users	Inhalation
Historical use of firefighting foams	PFAS	Site Workers during demolition and construction	Dermal Contact
		Future site residents	Ingestion
		Adjacent site users	Inhalation
		Groundwater	Seepage into the subsurface soils, bedrock, and groundwater.
Offsite contamination sources	HM, TPH, PAH, BTEX, VOC	Site Workers during demolition and construction	Dermal Contact
		Future site residents	Ingestion
		Adjacent site users	Inhalation

5.6 DATA GAPS

Based on information from the site walkover inspection and site history review, EI considered a programme of intrusive investigation was warranted to conduct targeted sampling at locations of known, potential sources of contamination (as listed in **Section 5.1**), with systematic sampling coverage across the site area.

6. SAMPLING, ANALYTICAL, AND QUALITY PLAN (SAQP)

The SAQP plays a crucial role in ensuring that the data collected as part of this, and ongoing environmental works carried out at the site are representative, and provide a robust basis for site assessment decisions. This SAQP includes the following:

- Data quality objectives, including a summary of the objectives of the ESA;
- Investigation methodology including media to be sampled, details of analytes and parameters to be monitored and a description of intended sampling points;
- Sampling methods and procedures;
- Field screening methods;
- Analysis Methods;
- Sample handling, preservation and storage; and
- Analytical QA/QC.

6.1 DATA QUALITY OBJECTIVES (DQO)

In accordance with the US EPA (2006) *Data Quality Assessment* and the EPA (2017) *Guidelines for the NSW Site Auditor Scheme*, the process of developing Data Quality Objectives (DQO) was used by the EI assessment team to determine the appropriate level of data quality needed for the specific data requirements of the project. The DQO process that was applied for this assessment is documented in **Table 6-1**.

Table 6-1 Summary of Project Data Quality Objectives

DQO Steps	Details	Comments (changes during investigation)
State the Problem Summarise the contamination problem that will require new	 The site proposed demolition of existing structures and redevelopment into a mixed use development including a residential apartment building, townhouses and commercial/retail overlying a single level basement (Section 1.2). 	-
environmental data, and identify the resources available to resolve the problem; develop a conceptual site model	 Historical information and site inspection identified the potential for contamination to be present in site soil and/or groundwater, contributed by various potential sources, predominantly industrial use, listed in Section 5.1. Based on the site history information collected, a preliminary conceptual site model of the site has been developed, and is present in Section 5.4. 	
	 The investigation sampling must provide supportive information on the environmental conditions of the site to determine the site's suitability for the proposed development. 	
2. Identify the Goal of the Study	Based on the objectives outlined in Section 1.4 , the decisions that need to be made are	-
(Identify the decisions) Identify the decisions that need to be	 Has the nature, extent and source of any soil, vapour and/or groundwater impacts onsite been defined? 	
made on the contamination problem and the new environmental data	• What impact do the site specific, geological, and hydrogeological conditions have on the fate and transport of any impacts that may be identified?	
required to make them	 Does the level of impact coupled with the fate and transport of identified contaminants represent an unacceptable risk to identified human and/or environmental receptors on or offsite? 	
	 Does the collected data provide sufficient information to allow the selection and design of an appropriate remedial strategy, if necessary? 	

actions

DQO Steps Details Comments (changes during investigation) 3. Identify Information Inputs Inputs to the decision making process include: (Identify inputs to decision) Proposed development plans and land use; Identify the information needed to Regional and site settings including site geology, topography and surrounding land support any decision and specify uses: which inputs require new Previous investigation completed at the site by SGA Environmental (2012); environmental measurements Areas of concern identified by SGA Environmental (2012) and during the site inspection prior to intrusive investigations; National and NSW EPA guidelines under the NSW Contaminated Land Management Act 1997; Intrusive investigation sampling to characterise environmental conditions at the site and to evaluate the potential risks to sensitive receptors; and Laboratory analytical results of soil and groundwater samples collected. At the end of the assessment, a decision must be made regarding whether the soils and groundwater are suitable for the proposed development, or if additional investigation or remedial works are required to make the site suitable. 4. Define the Boundaries of the Lateral – the investigation will be conducted within the site boundaries; which defines Lateral – the extent of the study onsite was limited to accessible areas of the site due to Study the extent of the investigation; existing building structures, infrastructure, and Specify the spatial and temporal Vertical – From existing ground surface, underlying fill and natural soil and rock provision of access, as detailed in Section 7.2. aspects of the environmental media horizons, to a maximum depth of 5.50 mBGL; and that the data must represent to Vertical – BH3 to BH6 terminated within fill due to Temporal – Results are valid on the day of data and sample collection and remain support decision auger refusal. valid as long as no changes occur on site or contamination (if present) does not migrate on site or on to the site from off-site sources. 5. Develop the Analytic Approach The decision rules for the investigation were: (Develop a decision rule) If the concentrations of contaminants in the soil exceed the adopted land use criteria; To define the parameter of interest, then assess the need to further investigate the extent of impacts onsite. specify the action level, and integrate Decision criteria for QA/QC measures are defined by the Data Quality Indicators (DQI) previous DQO outputs into a single in Table 6-2. statement that describes a logical basis for choosing from alternative

DQO Steps

6. Specify Performance or Acceptance Criteria (Specify limits on decision errors)

Specify the decision-maker's acceptable limits on decision errors, which are used to establish performance goals for limiting uncertainties in the data

Details

Specific limits for this project are to be in accordance with the National and NSW EPA guidance, and appropriate indicators of data quality and standard procedures for field sampling and handling. This should include the following points to quantify tolerable limits:

- The null hypothesis for the investigation is that:
 - The 95% Upper Confidence Limits (UCL) of the mean for contaminants of concern exceeding the adopted criteria across the site.
- A minimum of 10 sampling points on a site of area 4,500 m² will allow detection of a circular hotspot with a nominal diameter of 19.9 m with 95% certainty;
- The acceptance of the site will be based on the probability that
 - The 95% UCL of the mean of the data will satisfy the given site criteria. Therefore a limit on the decision error will be 5% that a conclusive statement may be incorrect; and
 - The standard deviation of the results is less than 50% of the relevant remediation acceptance criterion; and
 - No single result exceeds the remediation acceptance criteria by 250% or more;
- Soil concentrations for chemicals of concern that are below investigation criteria made or approved by the NSW EPA will be treated as acceptable and indicative of suitability for the proposed land use(s);
- If contaminant concentrations in groundwater exceed the adopted criteria, further investigation will be considered prudent. If no contamination is detected in groundwater, further action will not be warranted.

7. Develop the Detailed Plan for Obtaining Data (Optimise the design for obtaining data)

Identify the most resource-effective sampling and analysis design for general data that are expected to satisfy the DQOs

- The site area (4,500 m²) required eleven sampling points according to EPA (1995).
- Soil sampling locations were set using a systematic sampling pattern across the
 accessible areas of the site.
- An upper soil profile sample (soil extracted immediately beneath the concrete hardstand / pavement / ground level) will be collected at each borehole location and tested for chemicals of concern, to assess the conditions of any fill layer, and impacts from activities above ground. Further sampling would also be carried out at deeper soil layers. These samples would be selected for testing based on field observations (including visual and olfactory evidence, as well as soil vapour screening in headspace samples) whilst giving consideration to characterise the subsurface soil stratigraphy.
- Three groundwater monitoring wells were proposed to characterise groundwater quality within the site.
- Written instructions will be issued to guide field personnel in the required fieldwork activities.

Comments (changes during investigation)

An additional sampling point was added to the investigation to allow a more complete coverage of the site area.

In light of access restrictions onsite, a systematic sampling pattern for assessment could not be adopted for every sampling position.

A targeted sampling approach was utilised.

An additional sampling point was added to the investigation to allow a more complete coverage of the site area.

In light of access restrictions onsite, a systematic sampling pattern for assessment could not be adopted for every sampling position.

A targeted sampling approach was utilised.

6.2 DATA QUALITY INDICATORS

To ensure that the investigation data collected was of an acceptable quality, the investigation data set was assessed against the data quality indicators (DQI) outlined in **Table 6-2**, which related to both field and laboratory-based procedures. The assessment of data quality is discussed in **Section 7**.

Table 6-2 Data Quality Indicators

Data Quality Objective	Data Quality Indicator	Acceptable Range		
Accuracy	Field – Trip blank (laboratory prepared) Laboratory – Laboratory control spike and matrix spike	< laboratory limit of reporting (LOR)		
	,	Prescribed by the laboratories		
Precision	Field – Blind replicate and spilt duplicate	< 30 % relative percentage difference (RPD [%])		
	Laboratory – Laboratory duplicate and matrix spike duplicate	Prescribed by the laboratories		
Representativeness	Field – Trip blank (laboratory prepared) Laboratory – Method blank	< laboratory limit of reporting (LOR)		
		Prescribed by the laboratories		
Completeness	Completion (%)	-		

7. ASSESSMENT METHODOLOGY

7.1 SAMPLING RATIONALE

With reference to the preliminary CSM described in **Section 5**, soil and groundwater investigation works were planned in accordance with the following rationale:

- Sampling fill and natural soils from ten (10) test bore locations located systematically across the site using a grid-based sampling pattern to characterise in-situ soils;
- Sampling groundwater during a single groundwater monitoring event (GME) at three (3) monitoring wells located across the site to assess for potential groundwater impacts; and
- Laboratory analysis of representative soil and groundwater samples for the identified chemicals of concern.

7.2 Investigation Constraints

The number of test bores drilled and monitoring wells installed during the investigation phase did not achieve the planned investigation scope described in **Section 7.1** due to a number of physical obstructions, which comprised:

- Previous groundwater wells identified in the previous SGA (2012) report, were unable to be resampled due to being concrete capped after the previous consultants finalised their report;
- An additional groundwater well was added to the scope of works, to determine an appropriate understanding of groundwater conditions of the site;
- Limited head-clearance for the mechanical drilling rig; and
- Buried impenetrable materials (buried deep slabs and rock boulders), which resulted in hand auger refusal.

Due to access and head clearance restrictions (limited ceiling height) within the existing buildings, proposed sampling locations BH2 to BH6 were completed using a hand auger.

Locations BH2 to BH6 were terminated within fill materials at a depths ranging between 0.30 -0.5 mBGL due to buried obstructions.

7.3 ASSESSMENT CRITERIA

For the purposes of this investigation, the adopted soil assessment criteria are referred to as the Soil Investigation Levels (SILs) and the adopted groundwater assessment criteria are referred to as the Groundwater Investigation Levels (GILs). SILs and GILs are presented alongside the analytical results in the corresponding summary tables, which are discussed in **Section 9**.

7.3.1 Soil

The assessment criteria proposed for this project are outlined in **Error! Not a valid bookmark self-reference.**. These were selected from available published guidelines that are endorsed by national or

state regulatory authorities, with due consideration of the exposure scenario that is expected for various parts of the site, the likely exposure pathways and the identified potential receptors.

Table 7-1 Adopted Investigation Levels for Soil

Environmental Media	Adopted Guidelines	Rationale
Soil	NEPM, 2013 Soil HILs, EILs, HSLs, ESLs & Management Limits for TPHs	Soil Health-based Investigation Levels (HILs) Samples from the north-western site area are to be assessed against the NEPM 2013 HIL-A (residential sites with accessible soils). The remainder of the site will be assessed against HIL-B thresholds for residential sites with minimal access to soils. Ecological Investigation Levels (EILs)
		BH4, BH7 & BH9 soil samples would also be assessed against the NEPM 2013 EILs for arsenic, copper, chromium (III), nickel, lead, zinc, DDT and naphthalene, which have been derived for protection of terrestrial ecosystems.
		Soil Health-based Screening Levels (HSLs)
		The NEPM 2013 Soil HSL-D thresholds for commercial/industrial sites for vapour intrusion would be applied to assess for potential human health impacts from residual vapours resulting from petroleum, BTEX, & naphthalene. Commercial/Industrial values have been adopted as Section 2.4.8 of Schedule B(1) of NEPM (2013) indicates that HSLs are applicable to ground floor uses.
		WADOH (2009) assessment criteria, as presented in NEPM (2013), were not adopted during this investigation. Presence / absence of asbestos (not-detected) were utilised for preliminary screening purposes.
		Management Limits for Petroleum Hydrocarbons
		Should the HSLs be exceeded for petroleum hydrocarbons, soil samples would also assessed against the NEPM 2013 <i>Management Limits</i> for the TRH fractions F1 – F4 to assess propensity for phase-separated hydrocarbons (PSH), fire and explosive hazards & adverse effects on buried infrastructure.

7.3.2 Groundwater

In accordance with DEC (2007) *Guidelines for the Assessment and Management of Groundwater Contamination*, groundwater acceptance criteria are based on environmental values considered relevant for groundwater use at the site and surrounding uses of groundwater and surface waters that may be effected by the site. Potential environmental values include:

- Aquatic ecosystems: surface water and groundwater ecosystems;
- Human Uses: these include but are not limited to potable water supply, agricultural water supply (irrigation and stock watering), industrial water use, aquaculture and human consumption of aquatic foods, recreational use (primary and secondary contact with surface waters), and visual amenity of surface waters;
- Human health in non-use scenarios: this includes consideration of health risks that may arise
 without direct contact between humans and the groundwater, for example, exposure to volatile
 contaminants above groundwater contaminant plumes; and

666

Buildings and structures: this includes protection from groundwater contaminants that can
degrade building materials through contact, for example, the weakening of building footings
resulting from chemically aggressive groundwater.

Cultural and spiritual values that are associated with the environment, including groundwater, should also be protected. Cultural and spiritual values may include spiritual relationships, sacred sites, customary uses, the plants and animals associated with the water, drinking water supplies, and recreational activities. In managing groundwater contamination, it is generally considered that cultural and spiritual values will be protected where groundwater quality protects all other relevant environmental values on a site.

El completed a search of registered groundwater bores within a 500 m radius of the site on the WaterNSW website (**Section 2.4**). 84 groundwater wells were registered within a 500 m radius, however these were all for monitoring purposes.

An assessment of the applicability of groundwater environmental values for the site and off-site is provided in **Table 7-2** below.

Table 7-2 Assessment of Groundwater Environmental Values

Environ	mental Value	Relevance				
Aquatic Ecosystems - Surface water ecosystems and groundwater ecosystems		The nearest down-gradient surface water ecosystem is towards Sheas Creek located approximately 800 m south-west of the site. This environmental value applies to all natural waterways and should be assessed.				
Human Uses	Potable Water	Potable water for the site will be supplied by municipal reticulated supply. The use of groundwater for potable uses is not registered within 500 m radius of the site, nor within a down-gradient (south easterly) direction from the site. Potable water is not considered to be a relevant environmental value for the site.				
	Agricultural Water supply (Irrigation and livestock watering)	There is no planned use of groundwater for agricultural purposes (irrigation and stock watering) at the site and the site is situated in an urbanised setting. The use of groundwater for agricultural uses is not registered within 500 m radius of the site nor within a down-gradient (south easterly) direction from the site. Agricultural water supply is not considered to be a relevant environmental value for the site.				
	Industrial Water use	There is no planned use of groundwater for industrial purposes at the site. Groundwater off-site for industrial purposes may be used however its use would be assessed for specific industrial use. The use of groundwater for industrial uses is not registered within 500 m radius of the site, nor within a down-gradient (south easterly) direction from the site. Industrial water supply is not considered to be a relevant environmental value for the site.				
	Aquaculture / human consumption of Aquatic foods	There is no planned use of groundwater for aquaculture/human consumption of aquatic foods at the site. El checked the NSW Department of Primary Industries Aquaculture Industry Directory 2016 for listings of aquaculture businesses in Waterloo and in neighbouring areas. The directory is not inclusive of all producers in NSW but does list businesses nominating to be listed. No businesses were listed for Waterloo or Surrounding Areas. The use of groundwater for aquaculture uses is not registered within 500 m radius of the site, nor within a down-gradient (south easterly) direction from the site. Aquaculture water supply is not considered to be a relevant environmental value for the site.				

667

Environmental Value		Relevance			
	Recreational use (primary and secondary contact)	There is no planned use of groundwater for recreational use at the site. The use of groundwater for recreational uses in swimming pools (i.e. pumping groundwater) is not registered within 500 m radius of the site. The use of groundwater for primary contact recreational uses is considered unlikely; however secondary contact may occur within the Sheas Creek.			
		Recreational use is considered to be a relevant environmental value for the site.			
	Visual amenity to surface waters	Given the distance of Sheas Creek from the site, this environmental value is not considered relevant to the site.			
Human health in non-use scenarios		The potential for vapour exposure from groundwater, without direct contact with groundwater, may occur if groundwater is contaminated with volatile contaminants. This Environmental Value should be assessed.			
Buildings and structures		Foundations may be in contact with groundwater. This environmental value should be assessed.			

Based on the above assessment, the environmental values (REVs) to be further assessed are: Aquatic Ecosystems, Recreational Use, and Buildings and Structures.

For the relevant environmental values, the adopted GILs are summarised in Table 7-3 below.

Table 7-3 Adopted Investigation Levels for Groundwater

Adopted Guidelines		Rationale			
Groundwater	NEPM, 2013 GILs for Fresh Waters	Groundwater Investigation Levels (GILs) for Fresh Water NEPM 2013 provides GILs for typical, slightly-moderately disturbed aquatic ecosystems, which are based on the ANZG (2018) Trigger Values (TVs) for the 95% level of protection of aquatic ecosystems; however, the 99% TVs were applied for the bio-accumulative metals cadmium and mercury. The fresh water criteria were considered relevant as the closest, potential surface water receptor was Alexandra Canal, located 920 m south-east of the site.			
		Due to the ANZECC (2000) criteria for petroleum hydrocarbons being below the laboratory limit of reporting, the PQL for each TRH fraction was adopted as the GIL for aquatic ecosystems, as per the guidance provided in DEC (2007) <i>Guidelines for the Assessment and Management of Groundwater Contamination</i> .			
	NEPM, 2013 GILs for Drinking purposes	Drinking Water GILs The NEPM (2013) GILs for drinking water quality were applied for the assessment of direct contact with groundwater. Drinking Water values are multiplied by a factor of 100 to address potential groundwater contact by basement users, and construction and maintenance workers. These values are based on the Australian Drinking Water Guidelines (Ref. NHMRC, 2011).			

For the purposes of this investigation, the adopted soil assessment criteria are referred to as the Soil Investigation Levels (SILs) and the adopted groundwater assessment criteria are referred to as the Groundwater Investigation Levels (GILs). SILs and GILs are presented alongside the analytical results in the corresponding summary tables, which are discussed in **Section 9**.

7.4 SOIL INVESTIGATION

The soil investigation works conducted at the site are described in **Table 7-4**. Test bore locations are illustrated in **Figure 2**.

Table 7-4 Summary of Soil Investigation Methodology

Activity/Item	Details
Fieldwork	The site investigation was conducted on 15 August 2018. Ten boreholes were completed, with three of these converted into monitoring wells (BH1M, BH9M, & BH10M).
Drilling Method & Investigation Depth	Boreholes BH1M, BH7, BH8, BH9M and BH10M were drilled using a ute-mounted solid flight auger drilling rig. Final bore depths were between 2.00 – 5.00 mBGL.
	Boreholes BH2 to BH6 were drilled using the hand auger method due to height/access restrictions within the buildings.
	Manual auger refusal was experienced at borehole BH3 to BH6 due to obstructions within fill soils.
Soil Logging	Drilled soils were classified in the field with respect to lithological characteristics and evaluated on a qualitative basis for odour and visual signs of contamination. Soil classifications and descriptions were based on Unified Soil Classification System (USCS) and Australian Standard (AS) 4482.1-2005. Bore logs are presented in Appendix E .
Field Observations (including visual and olfactory signs of potential contamination)	A summary of field observations is provided in borehole log descriptions (Appendix E), and summarised in Section 9.1.2 .
Soil Sampling	 Soil samples were collected using a dry grab method (unused, dedicated latex gloves) & placed into laboratory-supplied, acid-washed, solvent-rinsed glass jars.
	 Blind field duplicates was separated from the primary samples and placed into glass jars.
	 A small amount of duplicate was collected from each soil samples and placed into zip- lock bag for Photo-ionisation Detector (PID) screening.
	 A small amount of duplicate was separated from all fill samples and placed into a zip- lock bag for asbestos analysis.
Decontamination Procedures	Drilling Equipment - The drilling rods were decontaminated between sampling locations with potable water until the augers were free of all residual materials.
	Sampling Equipment – Tools (i.e. stainless steel hand trowel) were wiped clean using unused paper between near-surface sampling points, except where residue was observed after sampling, in which case they were washed with a potable water/phosphate-free detergent mixture, then rinsed with potable water and wiped with unused paper. Sampling gloves were replaced between sampling locations.
Sample Preservation	Samples were stored in a chilled (with ice-blocks) chest, whilst on-site and in transit to the laboratory. All samples were submitted and analysed within the required holding period, as documented in laboratory reports discussed in a later section.
Management of Soil Cuttings	Soil cuttings were used as backfill for completed boreholes.
Quality Control & Laboratory Analysis	A number of soil samples were submitted for analysis of previously-identified COPC by SGS Laboratories (SGS). QA/QC testing comprised intra-laboratory duplicates ('field duplicates') tested blind by SGS and an inter-laboratory field duplicate tested blind by Envirolab Services (Envirolab). All samples were transported under strict Chain-of-Custody (COC) conditions and COC certificates and laboratory sample receipt documentation were provided to EI for confirmation purposes, as discussed in Section 8 .
Soil Vapour Screening	Screening for potential VOCs in collected soil samples was conducted using a Photo-ionisation Detector (PID).

7.5 GROUNDWATER INVESTIGATION

The groundwater investigation works conducted at the site are described in **Table 7-5**. Monitoring well locations are illustrated in **Figure 3**.

Table 7-5 Summary of Groundwater Investigation Methodology

Activity/Item	Details				
Fieldwork	Groundwater monitoring wells were installed and developed on 15 August 2018; whereas, water level gauging, well purging, field testing and groundwater sampling was conducted on 24 August 2018.				
Well Construction	Test bores were converted to groundwater monitoring wells as follows:				
	 BH1M, BH9M and BH10M – screen 2.00 – 5.00 mBGL 				
	Drilling was undertaken by HartGeo Pty Ltd using a ute-mounted solid flight auger drilling rig. Well construction details are tabulated in Table 9-2 and documented in the bore logs presented in Appendix E . All three wells were installed to screen the shale bedrock.				
	Well construction was in general accordance with the standards described in NUDLC, 2012 and involved the following:				
	 50 mm, Class 18 uPVC, threaded, machine-slotted screen and casing, with slotted intervals in shallow wells set to screen to at least 500 mm above the standing water level to allow sampling of phase-separated hydrocarbon product, if present; 				
	 Base and top of each well was sealed with a uPVC cap; 				
	 Annular, graded sand filter was used to approximately 300mm above top of screen interval; 				
	 Granular bentonite was applied above annular filter to seal the screened interval; 				
	 Drill cuttings were used to backfill the bore annulus to just below ground level; and 				
	 Surface completion comprised a steel road box cover set in neat cement and finished flush with the concrete slab level. 				
Well Development	Well development was conducted for each well directly following installation. This involved agitation within the full length of the water column using a stainless steel bailer, followed by removal of water and accumulated sediment. Water was removed from the wells until dry.				
Well Survey (Elevation and location)	Well elevations at ground level were extrapolated from the spot elevations marked on the survey plan provided by the client (Figure 3). Well elevations at ground level were extrapolated in metres relative to Australian Height Datum (m AHD).				
Well Gauging & Groundwater Flow Direction	Monitoring wells BH1M, BH2M, and BH3M were gauged for standing water level (SWL, depth to groundwater) prior to well purging at the commencement of the GME on 14 May 2018. The measured SWLs are shown in Table 9-2 .				
	Based on the reduced water levels (RWLs, i.e. SWLs corrected to AHD) calculated at each monitoring well (Table 9-3), the direction of groundwater flow was inferred to be southwest.				
Well Purging & Field Testing	No volatile organic odours were detected during any stage of well purging. Measurement of water quality parameters was conducted repeatedly during well purging and were recorded onto field data sheets (Appendix F) once water quality parameters stabilised. In all wells groundwater was described as having moderate/low-moderate turbidity. Field measurements for Dissolved Oxygen (DO), Electrical Conductivity (EC) and pH of the purged water were also recorded during well purging. Purged water volumes removed from each well and field test results are summarised in Table 9-3 .				

Activity/Item	Details				
Groundwater sampling	Groundwater purging and sampling was conducted using a low-flow/minimal drawdown sampling method with a MicroPurge kit (MP15) and pump.				
	The MicroPurge system incorporates a low density poly-ethylene (LDPE) pump bladder, and a Teflon-lined LDPE sample delivery tube. The system used for this investigation employed pressurised carbon dioxide gas to regulate groundwater flow. Pump pressure and pumping cycles were adjusted accordingly to regulate extraction flow rate, and to avoid causing excessive drawdown of water level during the sampling process.				
	Groundwater quality was measured repeatedly during purging using a calibrated Hanna Multi Parameter 9829 water quality meter. Three consecutive field measurements recorded within \pm 3% for EC, \pm 20 mV for redox, \pm 20% for DO and \pm 0.2 for pH were considered indicative of representative groundwater. Following stabilisation of parameters, groundwater was sampled.				
Decontamination Procedure	The water level probe and water quality kit probes were washed in a solution of potable water and Decon 90 and then rinsed with potable water between measurements/wells.				
Sample	Sample containers were supplied by the laboratory with the following preservatives:				
Preservation	 One, 1 litre amber glass, acid-washed and solvent-rinsed bottle; 				
	Two, 40ml glass vials, pre-preserved with dilute hydrochloric acid, Teflon-sealed; and				
	 One, 250mL, HDPE bottle, pre-preserved with dilute nitric acid (1 mL). 				
	Samples for metals analysis were field-filtered using 0.45 μ m pore-size filters. All containers were filled with sample to the brim then capped and stored in ice-filled chests, until completion of the fieldwork and during sample transit to the laboratory.				
Quality Control & Laboratory Analysis	All groundwater samples were submitted for analysis of previously-identified chemicals of concern by SGS Laboratories (SGS). QA/QC testing comprised intra-laboratory duplicates ('field duplicates') tested blind by SGS and an inter-laboratory field duplicate tested blind by Envirolab Services (Envirolab). All samples were transported under strict Chain-of-Custody (COC) conditions and COC certificates and laboratory sample receipt documentation were provided to EI for confirmation purposes.				
Sample Transport	After sampling, refrigerated sample chests were transported to SGS Australia Pty Ltd using strict Chain-of-Custody (COC) procedures. Inter-laboratory duplicate (ILD) samples were forwarded to Envirolab Services Pty Ltd (Envirolab) for QA/QC analysis. A Sample Receipt Advice (SRA) was provided by each laboratory to document sample condition upon receipt. Copies of SRA and COC certificates are presented in Appendix G .				

8. DATA QUALITY ASSESSMENT

The assessment of data quality is defined as the scientific and statistical evaluation of environmental data to determine if these data meet the objectives of the project (Ref. USEPA 2006). Data quality assessment includes an evaluation of the compliance of the field sampling and laboratory analytical procedures and an assessment of the accuracy and precision of these data from the laboratory quality control measurements obtained.

The data quality assessment process for this assessment included a review of analytical procedures to confirm compliance with established laboratory protocols and an assessment of the accuracy and precision of analytical data from a range of quality control measurements. The QC measures generated from the field sampling and analytical program were as follows:

- Suitable records of fieldwork observations including borehole logs;
- Relevant and appropriate sampling plan (density, type, and location);
- Use of approved and appropriate sampling methods;
- Preservation and storage of samples upon collection and during transport to the laboratory;
- Complete field and analytical laboratory sample COC procedures and documentation;
- Sample holding times within acceptable limits;
- Use of appropriate analytical procedures and NATA-accredited laboratories; and
- Required LOR (to allow for comparison with adopted IL);
- Frequency of conducting quality control measurements;
- Laboratory blanks;
- Field duplicates;
- Laboratory duplicates;
- Matrix spike/matrix spike duplicates (MS/MSDs);
- Surrogates (or System Monitoring Compounds);
- Analytical results for replicated samples, including field and laboratory duplicates and interlaboratory duplicates, expressed as Relative Percentage Difference (RPD); and
- Checking for the occurrence of apparently unusual or anomalous results, e.g. laboratory results that appear to be inconsistent with field observations or measurements.

The findings of the data quality assessment in relation to the soil and groundwater investigations at the site are discussed in detail in **Appendix I**. QA/QC policies and DQOs are presented in **Appendix J**.

On the basis of the analytical data validation procedure employed the overall quality of the soil and groundwater analytical data produced for the site were considered to be of an acceptable standard for interpretive use.

9. RESULTS

9.1 Soil Investigation Results

9.1.1 Site Geology and Subsurface Conditions

The general site geology encountered during the drilling of the soil investigation boreholes, installation of monitoring wells may be described as a layer of anthropogenic filling overlying Botany Sands, with Hawkesbury Sandstone at depth. The geological information obtained during the investigation is summarised in **Table 9-1** and borehole logs from these works are presented in **Appendix E**.

Table 9-1 Generalised Subsurface Profile

Layer	Description	Depth to top and bottom of strata (mBGL)
Fill	CONCRETE	0.00 – 0.15
	Gravelly Clayey SAND; fine to medium grained, light brown/orange/ grey, with low to medium plasticity clay and fine, sub-angular to angular gravels, with plastics and bark fragments.	0.12 - 0.80
	SAND: fine to medium grained, dark brown, with organics.	0.10 - 0.20
	Gravelly CLAY; low to medium grained, brown, with fine to coarse gravels.	0.15 – 1.50
	Gravelly SAND; fine to medium grained, brown, with fine to coarse, sub-angular to angular gravels,	0.00 – 0.70
Residual	SAND; fine grained, light grey, brown, dark brown.	0.60 – 5.00 +
Soil	Silty CLAY (PEAT); medium plasticity, dark brown.	1.50 – 2.00
	CLAY; medium to high plasticity, brown.	
Bedrock	SANDSTONE; fine grained, yellow, with coarse, sub-angular to angular sandstone fragments.	0.20 - 5.50+

Notes:

9.1.2 Field Observations and PID Results

Soil samples were obtained from the test bores at various depths ranging between 0.1 m to 3.5mBGL. All examined soil samples were evaluated on a qualitative basis for odour and visual signs of contamination (e.g. hydrocarbon odours, oil staining, petrochemical filming, asbestos fragments, ash and charcoal) and the following observations were noted:

- Visual or olfactory evidence of sulfate and hydrocarbon impacts were noted in boreholes BH1M, BH2, BH4 and BH6 during this assessment;
- No brick and tile fragments were noted in the fill layers at any of the borehole locations investigated during this assessment;
- No fibrous cement sheeting, ash or charcoal was observed in any of the examined fill soils.
 However, slag was noted in BH5; and

⁺ Termination depth of borehole

 Slightly elevated VOC concentrations ranging was detected in natural soil material in BH1M_3.4-3.5 (23.1ppm), which were field-screened using a portable PID fitted with a 10.9 eV lamp. The PID results are shown in the borehole logs (Appendix E) and the samples showing higher PID values were therefore assigned for laboratory VOC and SVOC analysis.

9.2 GROUNDWATER INVESTIGATION RESULTS

9.2.1 Monitoring Well Construction

A total of three groundwater monitoring wells were installed across the site (BH1M, BH9M, and BH10M). Well construction details for the installed groundwater monitoring wells are summarised in **Table 9-2**.

Table 9-2 Monitoring Well Construction Details

Well ID	Bore Depth (mBGL)	Screen Interval (mBGL)	Lithology Screened
BH1M	5.00	2.00-5.00	Sand
ВН9М	5.00	2.00-5.00	Sand
BH10M	5.50	2.00-5.00	Sand

Notes:

mBGL - metres below ground level.

RL - Reduced Level – Surveyed elevation in metres relative to Australian Height Datum (mAHD).

TOC - top of well casing.

RL (TOC) - Surveyed elevation at TOC in mAHD.

9.2.2 Field Observations and Water Test Results

A single GME was conducted on all wells in 14 May 2018. On this date, standing water levels (SWLs) were measured within each well prior to well purging, the results of which were recorded with well purge volumes and field-based water test results. A summary of the recorded field data is presented in **Table 9-3** and copies of the completed Field Data Sheets are included in **Appendix F**.

Table 9-3 Groundwater Field Data

Well ID	SWL (mBTOC)	Purge Volume (L)	DO (mg/L)	Field pH	Field EC (μS/cm)	Temp (°C)	Redox (mV)	Odours / Turbidity
BH1M	3.29	2.0	0.31	7.16	783	18.74	167.3	Hydrocarbon/ Very high
вн9М	2.60	2.0	1.43	6.62	605	17.15	181.6	None/ Very high
BH10M	2.64	2.0	1.54	6.48	226	19.46	168.5	None/ High

Notes:

 $\label{eq:GME-Groundwater monitoring event.} GME-Groundwater monitoring event.$

SWL – Standing Water Levels as measured from TOC (top of well casing) prior to groundwater sampling.

m BTOC – metres below top of well casing (Note: Ground Level = TOC for the wells MW110, MW112 and MW114).

RL (TOC) - Reduced Level, elevation at TOC in metres relative to Australian Height Datum (mAHD).

[†] WL - Calculated groundwater level, in m AHD (calculated as RL – SWL) Note: these values were used for groundwater contouring analysis.

L – litres (referring to volume of water purged from the well prior to groundwater sample collection).

EC – groundwater electrical conductivity as measured onsite using portable EC meter.

μS/cm - micro Siemens per centimetre (EC units).

DO - Dissolved Oxygen in units of milligrams per litre (mg/L)

All groundwater parameters (pH, EC and DO) were tested on site. * Well not found, presumed damaged.

SWLs recorded during the GME indicate that groundwater flows in a south-westerly direction (**Figure 3**).

The field pH data indicated that the groundwater was circumneutral (pH ranged from 6.48 - 7.16). Electrical Conductivity (EC) measurements were recorded in the range 226 to 783 μ S/cm indicating that the groundwater was fresh in terms of water salinity.

9.3 LABORATORY ANALYTICAL RESULTS

9.3.1 Soil Analytical Results

A summary of laboratory results showing test sample quantities, minimum/maximum analyte concentrations and samples found to exceed the SILs, is presented in **Table 9-4**. More detailed tabulations of results showing the tested concentrations for individual samples alongside the adopted soil criteria are presented in **Table T1** at the end of this report. Completed documentation used to track soil sample movements and laboratory receipt (i.e. COC and SRA forms) are copied in **Appendix G** and all laboratory analytical reports for tested soil samples are presented in **Appendix H**.

Table 9-4 Summary of Soil Analytical Results

No. of primary samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Sample locations exceeding investigation levels
Hydrocarbons				
18	TRH F1	<25	<25	None
18	TRH F2	<25	180	HILs - None EILs - BH1M 0.3-0.4
18	TRH F3	<90	1,300	HILs - None EILs - BH1M_0.3-0.4
18	TRH F4	<120	<120	None
18	Benzene	<0.1	0.4	None
18	Toluene	<0.1	1.8	None
18	Ethyl benzene	<0.1	0.4	None
18	Total xylenes	<0.3	3.3	None
18	Naphthalene	<0.1	8.9	None
18	Benzo(a)pyrene	<0.1	10	None
18	Carcinogenic PAH	<0.3	14	HILs - BH1M_0.3-0.4 EILs - None
18	Total PAH	<0.8	170	None
Heavy Metals				
18	Arsenic	1	15	None
18	Cadmium	<0.3	2.6	None
18	Chromium (Total)	0.5	34	None
18	Copper	1.5	7,100	HILs - BH10M_0.4-0.5 EILs - BH10M_0.4-0.5

675

No. of primary samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Sample locations exceeding investigation levels
18	Lead	2	850	HILs - BH10M_0.4-0.5
18	Mercury	<0.05	0.53	None
18	Nickel	<0.5	59	HILs - None
				EILs - BH1M_0.3-0.4
18	Zinc	2.1	3,800	HILs - None
				EILs - BH1M_0.5-0.6, BH9M_0.3-0.4 and BH10M_0.4-0.5
OCPs				
11	Total OCPs	<1	6	None
OPPs				
11	Total OPPs	<1.7	<1.7	None
PCBs				
11	Total PCBs	<1	<1	None
Asbestos				
11	Asbestos	No asbestos detected	No asbestos detected	None

Heavy Metals

With reference to **Table T1**, heavy metals concentrations in sample BH10M_0.4-0.5 (7100 mg/kg for copper and 850 mg/kg for lead), exceeded health based SILs.

Exceedances of the EILs for copper, nickel and zinc were also identified in samples BH1M 0.3-0.4 (59 mg/kg for nickel) BH1M_0.5-0.6 (1200 mg/kg for zinc), and BH9M_0.3-0.4 (420 mg/kg for zinc) and BH10M_0.4-0.5 (7100 mg/kg for copper, 3800 mg/kg for zinc).

TRHs

As shown in **Table T1**, total recoverable hydrocarbons (TRH) were reported below the corresponding adopted SILs.

Exceedances of the EILs for F2 and F3 in BH1M_0.3-0.4 (180 mg/kg for F2 and 1,300 mg/kg for F3).

BTEX and Naphthalene

BTEX was below the corresponding SIL and ESL criteria, as shown in **Table T1**.

Naphthalene concentrations were also below the adopted SIL and ESL criteria.

PAHs

As summarised in Table T1, no exceedances of the adopted EILs were identified during testing.

Exceedances of the adopted SIL criteria for were also identified in sample BH1M_0.3-0.4 (14 mg/kg) for Carcinogenic PAH criteria.

OCPs, OPPs, and PCBs

With reference to **Table T1**, no detectable concentration of any of the screened OCP, OPP, and PCB compounds was identified in any of the tested samples. All laboratory PQLs were also within the corresponding SILs and EILs/ESLs criteria.

Asbestos

As summarised in **Table T1**, asbestos fibres were not identified by the laboratory in samples collected from shallow fill.

9.3.2 Groundwater Analytical Results

Laboratory analytical results for groundwater samples are summarised in **Table T2**, which also include the adopted GILs. Completed documentation used to track groundwater sample movements and laboratory receipt (COC and SRA forms) are copied in **Appendix G**. Copies of the laboratory analytical reports are attached in **Appendix H**.

Table 9-5 Summary of Groundwater Analytical Results

No. of primary samples	Analyte	Min. Conc. (μg/L)	Max. Conc. (µg/L)	Sample locations exceeding investigation levels
Hydrocarbo	ons			
3	F1 (C ₆ –C ₁₀)	<50	160	GILs Fresh Water Criteria: BH1M-1
3	F2 (>C ₁₀ -C ₁₆)	<60	190	GILs Fresh Water Criteria: BH1M-1
3	F3 (>C ₁₆ -C ₃₄)	<500	<1000	None
3	F4 (>C ₃₄ -C ₄₀)	<500	<1000	None
3	Benzene	<0.5	<0.5	None
3	Toluene	<0.5	<0.5	None
3	Ethylbenzene	<0.5	<0.5	None
3	o-xylene	<1	<1	None
3	m/p-xylene	<0.5	<0.5	None
PAHs				
3	Benzo(a)pyrene	<0.1	<0.2	None
3	Naphthalene	<0.1	<0.2	None
Heavy Meta	als			
3	Arsenic	<1	6	None
3	Cadmium	<0.1	<0.1	None
3	Chromium (Total)	<1	3	None
3	Copper	2	85	GILs Fresh Water Criteria: BH1M-1, BH3M-1
3	Lead	1	3	None
3	Mercury	<0.1	<0.1	None
3	Nickel	<1	3	None
3	Zinc	10	110	GILs Fresh Water Criteria: BH1M-1, BH3M-1
VOCs				
3	Total VOC	<10	20	None
Phenols				
3	Total Phenolics	<0.05	<0.05	None

Heavy Metals

With reference to **Table T2** concentrations in excess of the adopted GILs were identified for groundwater as follows:

- Copper (85 μg/L in BH1M-1 and 110 μg/L in BH3M-1)
- Zinc (65 μg/L in BH1M-1 and 92 μg/L in BH3M-1).

Based on El's experience, heavy metal concentrations exceeding water quality criteria are ubiquitous in groundwater systems in long-standing urban/industrial environments, and not considered to represent a cause for environmental concern.

TRHs and BTEX

With reference to **Table T2** concentrations in excess of the adopted GILs were identified for groundwater as follows:

- F1 (160 μg/L in BH1M-1)
- F2 (190 µg/L in BH1M-1).

PAHs and Phenols

PAHs and Phenols were below detected above the quantitation limits (PQLs) in any sample tested. All PQLs for PAHs were below the corresponding GILs, as shown in **Table T2**.

SVOCs & VOCs

As shown in **Table T2**, all laboratory results for the tested groundwater samples BH1M and BH7M showed non-detectable levels of SVOCs and VOCs.

10. SITE CHARACTERISATION

10.1 REVIEW OF CONCEPTUAL SITE MODEL

On the basis of investigation findings the CSM discussed in **Section 5** was considered to appropriately identify contamination sources, migration mechanisms and exposure pathways, as well as potential onsite and offsite receptors.

The following data gaps have been identified:

- Potential for soil and groundwater PFAS contamination has been identified from review of council
 information, presented in Section 4.3. Records indicate that site structures were re-established
 following a fire onsite. In addition a review of previous historical site usages (Section 4.1)
 indicated that the site was previously used for fabric manufacturing. In light of these findings, an
 additional round of soil and groundwater sampling for PFAS analysis must be conducted; and
- The quality of deeper fill and natural soils in the vicinity of borehole locations BH2, BH3, BH5, and BH6 where boreholes encountered obstructions in fill.

10.2 CONFIRMED POLLUTANT LINKAGES

Based on information that was gathered from soil and groundwater sampling conducted, the following confirmed pollutant linkages have been summarised in **Table 10-1**.

Table 10-1 Pollutant Linkages Model

Confirmed Contaminants	Contaminant Media	Migration & Exposure Pathways	Sensitive Receptor
F2 (BH1M_0.3-0.4)	Soil	Volatilisation Inhalation	Construction workers Future site users
Carcinogenic PAHs (BH1M_0.3-0.4)	Soil	Ingestion Inhalation Direct contact	Construction workers Future site users
F3 (BH1M_0.3-0.4) Copper (BH10M_0.4-0.5) Lead (BH10M_0.4-0.5) Nickel (BH1M_0.3-0.4) Zinc (BH1M_0.5-0.6, BH9M_0.3-0.4 & BH10M_0.4-0.5)	Soil	Direct contact /root uptake	Vegetation in future landscaping
F1 & F2 (BH1M-1)	Groundwater	Volatilisation Inhalation	Construction workers Future site users
Copper & Zinc (BH1M-1 & BH10M-1)	Groundwater	Ingestion Inhalation Direct contact	Construction workers Future site users

11. CONCLUSIONS

The property located at 242-244 Young Street, Waterloo NSW was the subject of a Detailed Site Investigation that was conducted in order to assess the nature and degree of on-site contamination associated with current and former uses of the property. Findings of this investigation identified the following:

- Historical records indicate that the site has been used for commercial/industrial purposes since
 the 1930s, with uses including soap and fabric manufacturing, and drum re-conditioning.
 Previous investigation by SGA (2012) also a former foundry was present at the site. Records
 also indicated that site structures were re-established following a fire onsite in the 1960s.
- SafeWork NSW records confirmed the presence of USTs at the property historically. While no
 information was identified indicating that tanks had been removed from the site, the tanks
 locations of the tanks could not be identified.
- Previous intrusive investigation by SGA (2012), in the very northern portion of the site, identified concentrations of copper, lead, C₁₀-C₃₆ petroleum hydrocarbons, polycyclic aromatic hydrocarbons (including benzo(a)pyrene) in fill material at levels exceeding NEPC (1999) commercial/industrial guidelines. The compounds identified indicate that the contamination is likely associated with former foundry use
- As part of this investigation, soil sampling and analysis were conducted at ten (10) targeted test bore locations (BH1M, BH9M, BH10M and BH2-BH8) down to a maximum depth of 5.5 mBGL.
 Sampling regime was considered to be appropriate for investigation purposes and comprised a targeted sampling approach, as a systematic sampling pattern could not be undertaken due to onsite obstructions:
- The sub-surface layers comprised a layer of granular and cohesive filling overlying cohesive residual soils, with sandstone bedrock below the residual soils;
- Groundwater was encountered during monitoring at depths ranging from 2.60 to 3.29 meters BTOC;
- Soil samples identified the following contaminants at concentrations above the adopted soil investigation levels:
 - BH1M nickel, zinc, carcinogenic PAHs, F2-TRH, and F3-TRH
 - BH9M zinc
 - BH10M copper, lead and zinc
- Groundwater samples identified the following contaminants at concentrations above the adopted groundwater investigation levels:
 - BH1M & BH10M copper and zinc
- The following data gaps identified in this DSI will require closure by further investigations:
 - Potential for PFAS contamination of soil and groundwater as a result of historical site activities; and

The quality of deeper fill and natural soils in the vicinity of borehole locations BH2, BH3,
 BH5, and BH6 where boreholes encountered obstructions in fill.

Based on the findings of this report, and with consideration of the Statement of Limitations (**Section 13**), EI concludes that localised contamination, and the presence of UPSS at the site, will require remediation to be performed at the site. EI consider that the site can be made suitable for the proposed development, subject to the implementation of the recommendations detailed in **Section 12** are

The works required to satisfactorily characterise and remediate the site should be completed following the demolition of all site structures. The requirement to complete these additional works can be included in Council's DA consent conditions.

12. RECOMMENDATIONS

It is assumed that during the proposed construction of a basement level car park as part of the development, all fill and residual soil materials will be removed from the site, therefore in view of the above findings and in accordance with the NEPM 2013 guidelines, it is considered that the site will be made suitable for the proposed residential development on completion of the following recommendations:

- Conduct a Hazardous Materials Survey (HMS) of current site structures. El recommend that a HMS is conducted prior to demolition of site structures;
- An additional site investigation (ASI) should be undertaken to close additional data gaps identified during this investigation. This would include:
 - The re-purging of the groundwater monitoring wells is to be undertaken before an additional round of groundwater sampling. Samples collected are to be tested for contaminants of concern (including PFAS);
- A Remedial Action Plan (RAP) should be prepared in accordance with the NSW Office of Environment and Heritage (2011) Guidelines for consultants reporting on contaminated sites prior to the commencement of site works as part of the proposed development. The RAP will provide details of the methodology and procedures required for effective site remediation, including:
 - A site inspection after demolition by a qualified environmental consultant, to determine if addition sources of environmental concern can be identified;
 - A ground penetrating radar (GPR) survey to identify the location of potential UPSS infrastructure onsite;
 - Removal of UPSS and validation resulting excavations;
 - Additional soil sampling and laboratory analysis for PFAS compounds. If additional investigation indicates the presence of PFAS compounds, impacted soils should be removed and excavations validated;
 - If additional groundwater sampling indicates the presence on hydrocarbon contamination at significantly elevated concentrations, three soil vapour wells should be installed at targeted locations across the site footprint, above the depth of groundwater, after the completion of demolition;
 - Any material being removed from site (including virgin excavated natural materials (VENM)) should be classified for off-site disposal in accordance the EPA (2014) Waste Classification Guidelines;
 - Any material being imported to the site should be assessed for potential contamination in accordance with NSW EPA guidelines as being suitable for the intended use or be classified as VENM;
 - Preparation of an unexpected finds protocol for implementation following demolition and during site excavation to ensure any potential contamination sources (e.g. soil staining,

- asbestos) that maybe identified are managed in accordance with the NSW EPA legislation and guidelines; and
- Preparation of a site validation report by a qualified environmental consultant, documenting the suitability of site environmental conditions for the proposed development.

13. STATEMENT OF LIMITATIONS

The findings presented in this report are the result of discrete and specific sampling methodologies used in accordance with best industry practices and standards. Due to the site-specific nature of soil sampling from point locations, it is considered likely that all variations in subsurface conditions across a site cannot be fully defined, no matter how comprehensive the field investigation program.

While normal assessments of data reliability have been made, EI assumes no responsibility or liability for errors in any data obtained from previous assessments conducted on site, regulatory agencies (e.g. Council, EPA), statements from sources outside of EI, or developments resulting from situations outside the scope of works of this project.

Despite all reasonable care and diligence, the ground conditions encountered and concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. In addition, site characteristics may change at any time in response to variations in natural conditions, chemical reactions and other events, e.g. groundwater movement and or spillages of contaminating substances. These changes may occur subsequent to El's investigations and assessment.

El's assessment is necessarily based upon the result of the site investigation and the restricted program of surface and subsurface sampling, screening and chemical testing which was set out in the proposal. Neither El, nor any other reputable consultant, can provide unqualified warranties nor does El assume any liability for site conditions not observed or accessible during the time of the investigations.

This report was prepared for the above named client and no responsibility is accepted for use of any part of this report in any other context or for any other purpose or by other third parties. This report does not purport to provide legal advice.

This report and associated documents remain the property of EI subject to payment of all fees due for this assessment. The report shall not be reproduced except in full and with prior written permission by EI.

REFERENCES

- ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, October 2000.
- ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia, August 2018.
- Ahern C R, Stone, Y, and Blunden B (1998) *Acid Sulfate Soils Assessment Guidelines*, part of the ASS Manual, Acid Sulfate Soil Management Advisory Committee (ASSMAC), Wollongbar, NSW, Australia, 28 August 1998, 59 p.
- Australian Standard (2005) Table E1 *Minimum sampling points required for site characterisation*, in Guide to the investigation and sampling of sites with potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds, Standards Australia, AS 4482.1-2005, p45.
- Chapman, G.A. and Murphy, C.L. (1989) Soil Landscapes of the Sydney 1:100 000 sheet, Soil Conservation Service of NSW, Sydney, September 1989.
- DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination, Dept. of Environment and Conservation, New South Wales, DEC 2007/144, June 2007.
- DMR (1983) Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1) *Geological Survey of New South Wales*, Department of Mineral Resources.
- EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme, 3rd Ed., EPA 2017P0269/121, October 2017.
- EPA (2014) Waste Classification Guidelines, NSW EPA, November 2014.
- EPA (1995) Sampling Design Guidelines Environment Protection Authority of New South Wales, Contaminated Sites Unit, EPA 95/59, September 1995.
- Murphy CL (1997) Acid Sulfate Soil Risk of the Botany Bay Sheet Department of Land and Water Conservation, Sydney, Second Edition. Supplied by the Sydney South Coast, Geographical Information Systems Unit.
- NEPM (2013) Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Schedule B2 Guideline on Site Characterisation and Schedule B4 Guideline on site-specific health risk assessments, National Environmental Protection (Assessment of Site Contamination) Measure 1999, National Environmental Protection Council, December 1999, Amendment 2013.
- NEMP (2018) *PFAS National Environmental Management Plan*, The Heads of the EPAs Australia and New Zealand (HEPA), January 2018.
- OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites, NSW Office of Environment and Heritage (OEH), OEH 2011/0650, 23 p.
- Sydney Local Environmental Plan (LEP) (20125) Acid Sulfate Soils Sheet 1:20,000 Map ASS_005, Sydney City Council, dated viewed 6 September 2018.
- USEPA (2006) Data Quality Assessment: A Reviewers Guide EPA QA/G-9R. USEPA Office of Environmental Information, EPA/240/B-06/002, February 2006.

WADOH (2009) Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia. Published by the Western Australian Department of Health, May 2009.

WHO (1996) Guidelines for Drinking Water Quality, World Health Organisation, 1996.

ABBREVIATIONS

ACM Asbestos-containing materials
ASI Additional site investigation

ASS Acid sulfate soils

B(a)P Benzo(a)pyrene (a PAH compound)

BH Borehole

BTEX Benzene, Toluene, Ethylbenzene, Xylene

COC Chain of Custody

COPC Contaminants of Potential Concern

cVOCs Chlorinated Volatile Organic Compounds (a sub-set of the VOC analysis suite)

DEC Department of Environment and Conservation, NSW (see OEH)
DECC Department of Environment and Climate Change, NSW (see OEH)

DECCW Department of Environment, Climate Change and Water, NSW (see OEH)

DA Development Application

DO Dissolved Oxygen
DP Deposited Plan

EC Electrical Conductivity

El Redox potential El Australia

EIL Ecological Investigation Level
EPA Environment Protection Authority
ESL Ecological Screening Level

F1 TRH $C_6 - C_{10}$ less the sum of BTEX concentrations (Ref. NEPM 2013, Schedule B1) F2 TRH $> C_{10} - C_{16}$ less the concentration of naphthalene (Ref. NEPM 2013, Schedule B1)

GIL Groundwater Investigation Level
GME Groundwater Monitoring Event
HIL Health-based Investigation Level
HSL Health-based Screening Level

km Kilometres

LNAPL Light, non-aqueous phase liquid (also referred to as PSH)

DNAPL Dense, non-aqueous phase liquid
EIL Ecological Investigation Level
ESL Ecological Screening Level

m Metres

MAH Monocyclic Aromatic Hydrocarbons mAHD Metres Australian Height Datum mBGL Metres Below Ground Level

mg/L Milligrams per litre

µg/L Micrograms per litre

MW Monitoring well

NATA National Association of Testing Authorities, Australia

NEPC National Environmental Protection Council
NEPM National Environmental Protection Measure

NSW New South Wales

OCP Organochlorine Pesticides

OEH Office of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)

OPP Organphosphorus Pesticides
PAHs Polycyclic Aromatic Hydrocarbons

Detailed Site Investigation 242-244 Young Street, Waterloo NSW Report No. E23915.E02_Rev0

PCB Polychlorinated Biphenyl

PFAS Per or Poly-Fluoroalkyl Substances

pH Measure of the acidity or basicity of an aqueous solution

PQL Practical Quantitation Limit (limit of detection for respective laboratory instruments)

QA/QC Quality Assurance / Quality Control

RAP Remediation Action Plan

SRA Sample receipt advice (document confirming laboratory receipt of samples)

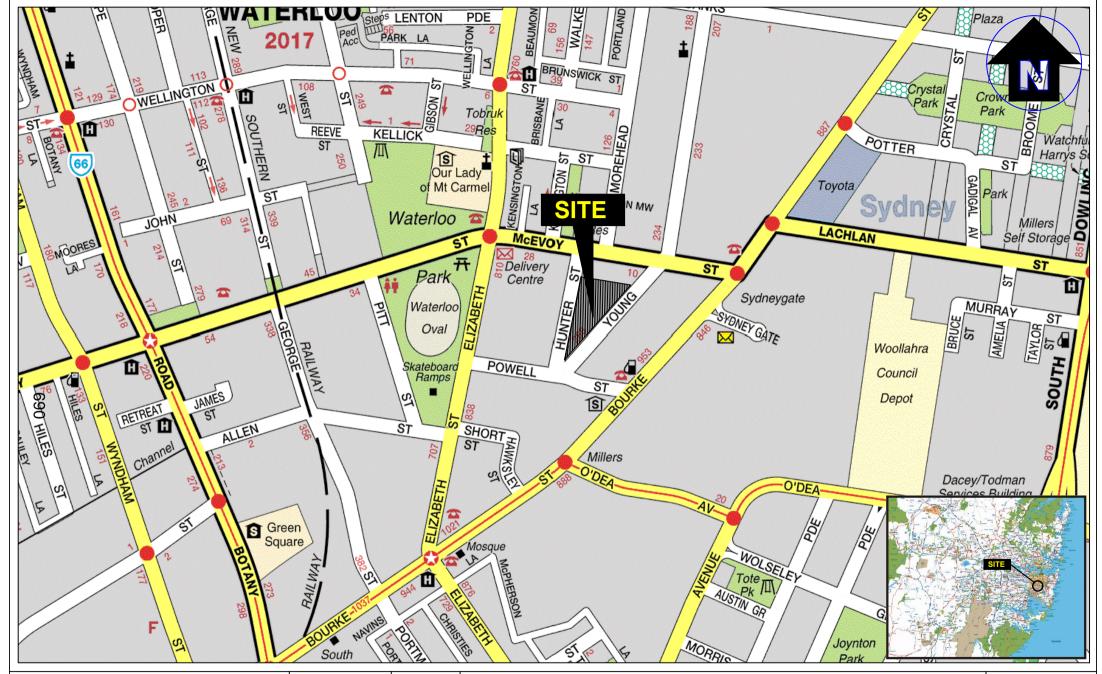
SWL Standing Water Level

TDS Total dissolved solids (a measure of water salinity)

TPH Total Petroleum Hydrocarbons (superseded term equivalent to TRH)

TRH Total Recoverable Hydrocarbons (non-specific analysis of organic compounds)

USEPA United States Environmental Protection Agency


VOCs Volatile Organic Compounds (specific organic compounds which are volatile)

WADOH Western Australian Department of Health

FIGURES

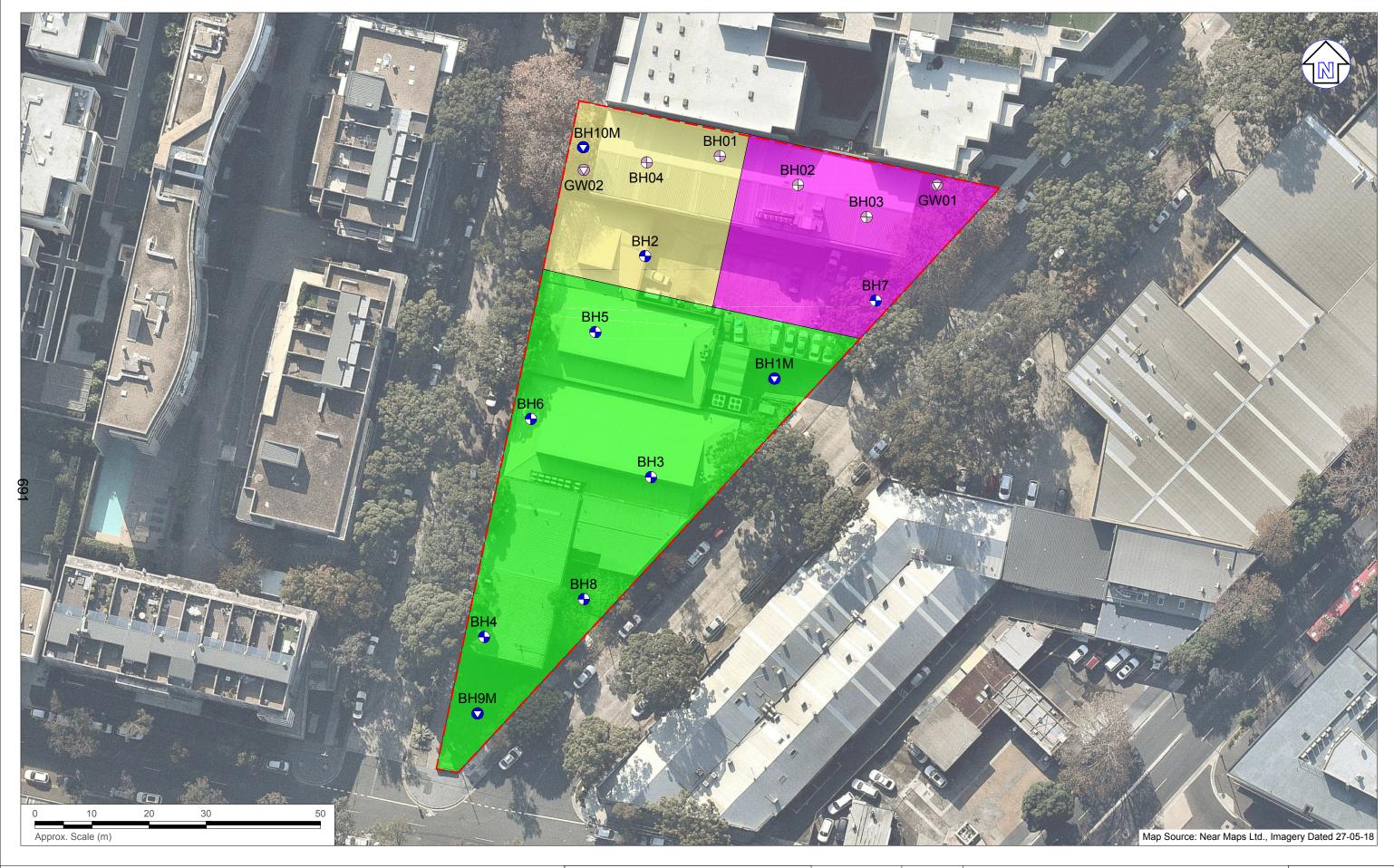
Drawn: D.R.

Approved: C.S.

Date: 21-08-18

Scale: Not To Scale

Bennett Murada Architects


Detailed Site Investigation 242-244 Young Street, Waterloo NSW

Site Locality Plan

Figure:

1

Project: E23915.E02

LEGEND

____ Approximate site bound

Approximate borehole location

Approximate borehole location (SGA, 2012)

Approximate borehole/monitoring well location

Approximate borehole/monitoring well location (SGA, 2012)

Approximate area for schooling (Area 1, assessed against Hil A NEPM Criteria)

Approximate area for commercial (Area 2, assessed against Hil B NEPM Criteria)

Approximate area for residential (Area 3, assessed against Hil B NEPM Criteria)

Drawn:	D.R.
Approved:	C.S.
Date:	18-10-18

Pacific Equity Partners Pty Ltd
Detailed Site Investigation
242-244 Young Street, Waterloo NSW
Sampling Location Plan

Figure:

Project: E23915.E02

TABLES

Table T1 - Summary of Soil Analytical results

					Heavy	/ Metals					Pi	AHs			B	TEX			TI	RHs					
Sample ID	Media	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	Carcinogenic PAHs (as B(a)P TEQ)	Benzo(a)pyrene	Total PAHs	Naphthalene	Benzene	Toluene	Ethylbenzene	Total Xylenes	F1	F2	F3	F4	Total OCPs	Total OPPs	Total PCBs	Asbestos
BH1M_0.3-0.4	Fill	15	0.5	34	50	76	0.42	59	140	14	10	170	8.9	<0.1	<0.1	<0.1	<0.3	<25	180	1300	<120	1	<1.7	<1	No
BH1M_0.5-0.6	Fill	4	1	14	34	84	0.53	30	1200	4	2.9	69	4	0.4	1.8	0.4	3.3	<25	48	300	<120	<1	<1.7	<1	No
BH1M_1.2-1.3	Natural Sand	2	<0.3	0.5	1.5	5	< 0.05	< 0.5	87	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NA	NA	NA	NA
BH1M_3.4-3.5	Natural Sand	1	< 0.3	2.7	2.2	10	< 0.05	0.8	66	< 0.3	<0.1	<0.8	0.1	<0.1	0.2	<0.1	<0.3	<25	<25	<90	<120	NA	NA	NA	NA
BH2_0.1-0.2	Fill	3	< 0.3	15	16	24	< 0.05	12	70	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	110	<120	<1	<1.7	<1	No
BH2_0.3-0.4	Natural Sandstone	2	<0.3	2.7	4.2	9	< 0.05	2.2	15	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NA	NA	NA	NA
BH3_0.2-0.3	Fill	3	<0.3	6.5	14	13	< 0.05	21	56	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH4_0.2-0.3	Fill	5	0.7	8.9	50	180	0.25	4.3	290	1.1	0.7	9.6	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH5_0.1-0.2	Fill	3	0.3	11	28	140	0.17	10	110	1.4	1	10	0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	110	<120	6	<1.7	<1	No
BH6_0.2-0.3	Fill	3	< 0.3	2.3	6.7	19	< 0.05	1.9	27	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH7_0.3-0.4	Fill	5	0.4	9.3	31	73	0.16	6.3	150	3.1	2.3	20	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	160	<120	<1	<1.7	<1	No
BH8_0.3-0.4	Fill	2	< 0.3	5.5	16	33	0.07	4	55	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH8_1.7-1.8	Natural Sand	2	0.3	1.9	5	61	0.09	< 0.5	43	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NA	NA	NA	NA
BH9M_0.3-0.4	Fill	7	1	12	52	210	0.23	5.8	420	0.9	0.6	6.3	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH9M_1.8-1.9	Natural Sand	2	< 0.3	2.3	2	19	< 0.05	0.6	3.5	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NA	NA	NA	NA
BH10M_0.4-0.5	Fill	9	2.6	5	7100	850	0.09	12	3800	0.3	0.2	1.7	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	No
BH10M_1.7-1.8	Peat	9	< 0.3	5.2	9.9	10	< 0.05	2.1	18	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	NA	NA	NA	NA
BH10M_2.4-2.5	Natural Sand	2	< 0.3	3.5	2.4	2	< 0.05	0.7	2.1	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	NA	NA	NA	NA
	1									Sta	tistical Analys	is												•	
Maximum Concentration	on	15	2.6	34	7100	850	0.53	59	3800	14	10	170	8.9	0.4	1.8	0.4	3.3	<25	180	1300	<120	6	<1.7	<1	No
95% UCL		NC	NC	NC	4327	NC	NC	19	2480	4.878	NC	NC	NC	NC	NC	NC	NC	NC	64.74	446.7	NC	NC	NC	NC	NC
			-	•		•	-	•	-		SILs	•			-			-	-		-				
HIL B - Residential with minimal opportunition	ies for soil access	500	150	500 Cr(VI)	30000	1200	120	1200	60000	4	NR	400										NR	NR	1	
						Source	depths 0 m to	<1 mBGL					NL	3	NL	NL	230	260	NL						
HSL D - Commercial/Industri	rial					Source	depths 1 m to	<2 mBGL					NL	3	NL	NL	NL	370	NL						
Soil texture classification –Sar	nd 1					Source	depths 2 m to -	<4 mBGL					NL	3	NL	NL	NL	630	NL						7777
						Sou	rce depths >4 r	mBGL					NL	3	NL	NL	NL	NL	NL		/////		/////		
EILs / ESLs - Residentia	al ¹	105	////	205 ³	125 ³	1260 ³	////	35 ³	350 ³	////	33 ²	////	170	50	85	70	105	180	120	300	2,800	180	////	/////	7///
Management Limits – R <i>esidential, parkland an</i> Coarse grained soil texture																		700	1000	2500	10000				
Asbestos contamination HSL – Res Bonded ACM (%w/w)	sidential B																								0.01
Asbestos contamination HSL	for																								0.001

Notes:

F1

F2

F3 F4

Highlighted values indicates concentration exceeds Human Health Based Soil Criterial
Highlighted values indicates concentration exceeds Ecological Based Soil Criterial

HIL B NEPC 1999 Amendment 2013 'HIL B' Health Based Investigation Levels applicable for residential exposure settings with minimal opportunities for soil access, including dwellings with fully and permanently paved yard space such as high rise buildings and apartments.

NEPM (2013) ESL Moderate Reliability Criteria

No current published criterion.

Not Limiting' If the derived soil vapour limit exceeds the soil concentration at which the pore water phase cannot dissolve any more of the individual chemical

'Not Tested' i.e. the sample as not analysed

Coarse Grained soil values were applied, being the most conservative of the material types.

Ecological criteria for Benzo(a)pyrene selected from CRC Care Report No. 39 (2017)

EIL Criteria is calculated from summing the ACL and the ABC threshold values

TPH C_6 - C_{10} less the sum concentration of BTEX.

TPH $C_{>10}$ - C_{16} less the concentration of Naphthalene.

TPH $C_{>16}$: C_{34} TPH $C_{>34}$: C_{40}

	A B	С	D	E JCL Statis	F stics for Unc	G ensored Full	H Data Sets	I	J	K	L
1											
2	User	Selected Options									
3		of Computation	3/09/2018 10:0)1·44 AM							
4	Bate/Time	From File	WorkSheet.xls								
5		Full Precision	OFF	1							
6	Confido	ence Coefficient	95%								
7	Number of Bootst		2000								
8	Number of Books	пар Орегацопѕ	2000								
9											
10	Copper										
11	Сорреі										
12					0	04-41-41					
13			N I COL		General	Statistics			(D)	01 1:	10
14		ı otal	Number of Obs	servations	18					Observations	
15								Numbe	r of Missing	Observations	
16				Minimum	1.5					Mean	
17			l	Maximum	7100					Median	
18				SD	1669				Std. I	Error of Mean	
19			Coefficient of	Variation	4.046					Skewness	4.242
20											
21					Normal C	OF Test					
22		S	hapiro Wilk Tes	Statistic	0.261			Shapiro W	ilk GOF Tes	t	
23		5% SI	hapiro Wilk Criti	ical Value	0.897		Data No	t Normal at	5% Significa	nce Level	
24			Lilliefors Tes	t Statistic	0.53			Lilliefors	GOF Test		
25		5	% Lilliefors Criti	ical Value	0.209		Data No	t Normal at	5% Significa	nce Level	
26				Data Not	Normal at 5	% Significan	ce Level				
27											
28				As	suming Norr	nal Distributi	on				
29		95% No	ormal UCL				95%	UCLs (Adju	usted for Ske	ewness)	
30			95% Studer	nt's-t UCL	1097			95% Adjusto	ed-CLT UCL	(Chen-1995)	1480
31								95% Modifi	ed-t UCL (Jo	hnson-1978)	1162
32											
33					Gamma (GOF Test					
34			A-D Tes	t Statistic	3.734		Ander	son-Darling	Gamma GC	OF Test	
35			5% A-D Criti	ical Value	0.88	Da	ata Not Gam	ma Distribu	ted at 5% Sig	gnificance Le	vel
36			K-S Tes	t Statistic	0.449		Kolmog	rov-Smirno	ff Gamma G	OF Test	
37			5% K-S Criti	ical Value	0.225	Da	ata Not Gam	ma Distribu	ted at 5% Sig	gnificance Le	vel
38			Data	Not Gamr	na Distribute	ed at 5% Sigr	nificance Le	vel			
39											
40					Gamma	Statistics					
			k l	hat (MLE)	0.22			k	star (bias co	rrected MLE)	0.22
41				hat (MLE)	1874					rrected MLE)	
42				hat (MLE)	7.924				,	as corrected)	
43		MI	LE Mean (bias o		412.5				•	as corrected)	
44			- (/	-			Approximate		Value (0.05)	
45		Adius	sted Level of Sig	nificance	0.0357					Square Value	
46		, tajuc		,	2.3007				.,	Tuide	
47				Δεσ	sumina Gam	ma Distributi	ion				
48	95% Ann	roximate Gamma	IICI (use who		1213	a Distribut		iusted Cam	ma LICL /us/	e when n<50)	1356
49	33 /0 App	A CAITIGIG CIGITIII	OOL (USE WITE	30))	1210		33 /0 AU	jusiou Gaill	a UUL (use	- WINGH H-30)	1000
50					Lognorma	GOP Test					
51			hanira Mille T	t Ctatictic		GOT-1 est	Cha-	iro \A/ill- L =	anormal CO	E Toot	
52		S	hapiro Wilk Tes	oi Statistic	0.833		Snap	ONTO VVIIK LO	gnormal GO	r i est	

53	A	В	C 5% S	D hapiro Wilk (E Critical Value	F 0.897	G	H Data Not	l Lognormal a	J t 5% Signific	K ance Level	L		
54				Lilliefors	Test Statistic	0.209		Lil	liefors Logn	ormal GOF T	est			
55			5	5% Lilliefors (Critical Value	0.209		Data Not	Lognormal a	t 5% Signific	ance Level			
56					Data Not I	_ognormal at	5% Significa	nce Level						
57														
58						Lognorma	l Statistics							
59				Minimum of	Logged Data	0.405				Mean of	logged Data	2.729		
60				Maximum of	Logged Data	8.868				SD of	logged Data	1.941		
61														
62					Ass	uming Logno	rmal Distribu	ıtion						
63					95% H-UCL	729.6				Chebyshev (,	209.6		
64				=	(MVUE) UCL				97.5%	Chebyshev (MVUE) UCL	350.8		
65			99%	Chebyshev	(MVUE) UCL	512								
66														
67					-		tion Free UC							
68					Data do not f	follow a Disc	ernible Distri	bution (0.05	5)					
69														
70							tribution Free	UCLS		050/ :	-1.1	1007		
71					5% CLT UCL						ckknife UCL	1097		
72					ootstrap UCL				050/		otstrap-t UCL	43435		
73					ootstrap UCL				95%	Percentile Bo	ootstrap UCL	1198		
74					ootstrap UCL				050/ 01	/ N / .	C4/ HCI	2127		
75					ean, Sd) UCL ean, Sd) UCL					nebyshev(Me	*			
76			97.5% CI	iebysnev(ivie	ean, Su) UCL	2009	869 99% Chebyshev(Mean, Sd) UCL 4327							
77						Suggested	UCL to Use							
78			99% Ch	ehvshev (Me	ean, Sd) UCL		001 10 036							
79				CDy311CV (IVIC	Jan, Ou) OOL	4027								
80		Note: Sugge	estions regard	ding the sele	ction of a 95%	6 UCL are pr	ovided to helr	the user to	select the n	nost appropri	ate 95% UCL			
81					d upon the res							-		
82					2003). Howe						(====)			
83 84					dditional insig									
85														
86														
_	Nickel													
88														
89						General	Statistics							
90			Tota	Number of 0	Observations	18			Numbe	r of Distinct C	Observations	16		
91									Numbe	r of Missing C	Observations	0		
92					Minimum	0.25					Mean	9.622		
93					Maximum	59					Median	4.15		
94					SD	14.68				Std. E	rror of Mean	3.461		
95				Coefficien	nt of Variation	1.526					Skewness	2.61		
96														
97							GOF Test							
98				•	Test Statistic				•	ilk GOF Test				
99			5% S		Critical Value			Data No		5% Significar	nce Level			
100					Test Statistic					GOF Test				
101			5	5% Lilliefors (Critical Value				t Normal at	5% Significar	nce Level			
102					Data No	t Normal at 5	695	ce Level						
103														
104					As	ssuming Norr	mal Distributi	on						

105	A B C D E 95% Normal UCL	F	G H 95	UCLs (Adjusted for Skewness)	L
106	95% Student's-t UCL	15.64		95% Adjusted-CLT UCL (Chen-1995)	17.59
107				95% Modified-t UCL (Johnson-1978)	16
108				-	
109		Gamma	OF Test		
110	A-D Test Statistic	0.334	And	lerson-Darling Gamma GOF Test	
111	5% A-D Critical Value	0.79	Detected data app	ear Gamma Distributed at 5% Significand	ce Level
112	K-S Test Statistic	0.125	Kolm	ogrov-Smirnoff Gamma GOF Test	
113	5% K-S Critical Value	0.213	Detected data app	ear Gamma Distributed at 5% Significand	ce Level
114	Detected data appear	r Gamma Di	tributed at 5% Signific	cance Level	
115					
116		Gamma	statistics		
117	k hat (MLE)	0.609		k star (bias corrected MLE)	0.545
118	Theta hat (MLE)	15.79		Theta star (bias corrected MLE)	17.66
119	nu hat (MLE)	21.94		nu star (bias corrected)	19.62
120	MLE Mean (bias corrected)	9.622		MLE Sd (bias corrected)	13.03
121		II.		Approximate Chi Square Value (0.05)	10.57
122	Adjusted Level of Significance	0.0357		Adjusted Chi Square Value	9.936
123		1			
124	Ass	suming Gam	na Distribution		
125	95% Approximate Gamma UCL (use when n>=50)	17.86	95% /	Adjusted Gamma UCL (use when n<50)	19
126					
127		Lognorma	GOF Test		
128	Shapiro Wilk Test Statistic	0.971	Sh	apiro Wilk Lognormal GOF Test	
129	5% Shapiro Wilk Critical Value	0.897	Data app	ear Lognormal at 5% Significance Level	
130	Lilliefors Test Statistic	0.1	ı	illiefors Lognormal GOF Test	
131	5% Lilliefors Critical Value	0.209	Data app	ear Lognormal at 5% Significance Level	
132	Data appear	Lognormal	t 5% Significance Le	vel	
133					
134		Lognorma	Statistics		
135	Minimum of Logged Data	-1.386		Mean of logged Data	1.253
136	Maximum of Logged Data	4.078		SD of logged Data	1.595
137					
138			mal Distribution		
139	95% H-UCL	50.23		90% Chebyshev (MVUE) UCL	25.45
140	95% Chebyshev (MVUE) UCL	32.05		97.5% Chebyshev (MVUE) UCL	41.2
141	99% Chebyshev (MVUE) UCL	59.18			
142					
143	•		on Free UCL Statistic		
144	Data appear to follow a	Discernible	istribution at 5% Sigr	nificance Level	
145					
146	-		ibution Free UCLs	 	
147	95% CLT UCL	15.32		95% Jackknife UCL	15.64
148	95% Standard Bootstrap UCL	15.3		95% Bootstrap-t UCL	23.29
149	95% Hall's Bootstrap UCL	38.44		95% Percentile Bootstrap UCL	15.76
150	95% BCA Bootstrap UCL	18.22			
151	90% Chebyshev(Mean, Sd) UCL	20.01		95% Chebyshev(Mean, Sd) UCL	24.71
152	97.5% Chebyshev(Mean, Sd) UCL	31.24		99% Chebyshev(Mean, Sd) UCL	44.06
153					
154		Suggested	JCL to Use		
155	95% Adjusted Gamma UCL	19			
156					
			·		•

457	A B C D E Note: Suggestions regarding the selection of a 95%	F UCL are pro	G H I J K Divided to help the user to select the most appropriate 95% UCL.	L
157			mulation studies summarized in Singh, Singh, and laci (2002)	
158	·		ns results will not cover all Real World data sets.	
159			ay want to consult a statistician.	
160				
161				
162	Carc PAHs			
163	3410174110			
164		General S	Statistics	
165	Total Number of Observations	18	Number of Distinct Observations 8	
166	rotal Nambel of Observations		Number of Missing Observations 0	
167	Minimum	0.15		.469
168	Maximum	14		.15
169	SD	3.317		.782
170	Coefficient of Variation	2.257		.555
171	Coefficient of Variation	2.257	Skewiless 5.	.555
172		Namedo	005.Total	
173	Objection Wells To at Obstication	Normal G		
174	Shapiro Wilk Test Statistic	0.46	Shapiro Wilk GOF Test	
175		0.897	Data Not Normal at 5% Significance Level	
176	Lilliefors Test Statistic	0.345	Lilliefors GOF Test	
177	5% Lilliefors Critical Value	0.209	Data Not Normal at 5% Significance Level	
178	Data Not	Normal at 5	% Significance Level	
179				
180		uming Norn	nal Distribution	
181	95% Normal UCL		95% UCLs (Adjusted for Skewness)	
182	95% Student's-t UCL	2.83	` ` ` '	.456
183			95% Modified-t UCL (Johnson-1978) 2.1	.939
184				
185		Gamma C	GOF Test	
186	A-D Test Statistic	2.615	Anderson-Darling Gamma GOF Test	
187	5% A-D Critical Value	0.803	Data Not Gamma Distributed at 5% Significance Level	
188	K-S Test Statistic	0.354	Kolmogrov-Smirnoff Gamma GOF Test	
189	5% K-S Critical Value	0.215	Data Not Gamma Distributed at 5% Significance Level	
190	Data Not Gamm	na Distribute	ed at 5% Significance Level	
191				
192		Gamma S	Statistics	
193	k hat (MLE)	0.488	k star (bias corrected MLE) 0.	.444
194	Theta hat (MLE)	3.011	Theta star (bias corrected MLE) 3.	.312
195	nu hat (MLE)	17.57	nu star (bias corrected) 15	5.97
196	NALE Many (bing any start)	1.469	MLE Sd (bias corrected) 2.3	.206
197			Approximate Chi Square Value (0.05) 7.	.944
198	Adjusted Level of Significance	0.0357	Adjusted Chi Square Value 7.	.404
199				
200	Ass	uming Gam	ma Distribution	
201	95% Approximate Gamma UCL (use when n>=50))	2.955	95% Adjusted Gamma UCL (use when n<50) 3.	.17
202				
203		Lognormal	GOF Test	
204	Shapiro Wilk Test Statistic	0.721	Shapiro Wilk Lognormal GOF Test	
205	5% Shapiro Wilk Critical Value	0.897	Data Not Lognormal at 5% Significance Level	
206	Lilliafara Tank Chakinkia	0.36	Lilliefors Lognormal GOF Test	
207	5% Lilliefors Critical Value	0.209	Data Not Lognormal at 5% Significance Level	
207	Data Not Lo	ognormal at	5% Significance Level	
200				

	A	В	С		D	E		F	G	Н		l	J		K	L	
209								Lognor	l Statistics								
210				Mini	mum of	Logged	Doto	-1.897	i Statistics				Moon o	floago	d Data	-0.922	
211						Logged		2.639					Mean o	of logge		1.456	
212				IVIAXI	mum or	Logged	Data	2.039					30 0	ii logge	u Data	1.430	
213						٨٠٠٠	ımina Loana	rmal Diatrib	ution								
214						95% H		Assuming Lognormal Distribution CL 3.763 90% Chebyshev (MVUE) UCI									
215				5% Che	hychov			2.845		90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL							
216					•	` '		5.168			9	7.5%	Chebyshev	(IVIVUE	±) UCL	3.629	
217								5.100									
218						Nonn	arame	tric Dietribu	tion Free UC	1 Statistic	~e						
219						-			ernible Distr								
220						Data ut	1100	ollow a Disc	errible Distr	Dudon (o.	.00)						
221						N	lonnai	rametric Dis	tribution Free	- UCI s							
222					9	5% CLT	-	2.755					95% J	lackknif	fe UCI	2.83	
223				95% Sta				2.721					95% Bo			6.249	
224						ootstrap		6.798				95%	Percentile B			2.956	
225						ootstrap		3.781				23/01			7 332		
226			90%	6 Cheby		·		3.815			95	5% Ch	nebyshev(M	ean. So	d) UCL	4.878	
227				6 Cheby				6.352					nebyshev(M		,	9.249	
228					(,/							-,(***		,		
229								Suggested	UCL to Use								
230			95%	Chebys	shev (Me	ean, Sd)	UCL	4.878									
231					,	,/		-						<u> </u>			
232		Note: Suga	jestions re	garding	the sele	ction of	a 95%	UCL are pr	ovided to hel	p the user	to select	t the m	nost approp	iate 95	5% UCL.		
233234				-				-	mulation stud								
235			and Si	ingh and	Singh (2003). H	Howev	er, simulation	ns results wi	Il not cove	r all Rea	l Worl	d data sets.				
236					For ac	dditional	linsigl	nt the user m	nay want to co	onsult a st	atistician	١.					
237																	
238																	
239	F2																
240		-	-														
241								General	Statistics								
242	-		Т	otal Nur	mber of (Observa	ations	18		-	N	umbe	r of Distinct	Observ	vations	3	
243											N	umbei	r of Missing	Observ	vations	0	
244						Min	imum	12.5							Mean	23.78	
245						Max	imum	180						N	Median	12.5	
246							SD	39.87					Std.	Error of		9.398	
247				C	oefficier	nt of Var	iation	1.677						Ske	ewness	3.971	
248																	
249								Normal (GOF Test								
250						Test Sta		0.323					ilk GOF Tes				
251			5	% Shapi				0.897		Data N			5% Significa	ance Le	evel		
252						Test Sta		0.5					GOF Test				
253				5% L	illiefors (Critical \		0.209			Not Norm	nal at t	5% Significa	ance Le	vel		
254						Dat	ta Not	Normal at 5	% Significar	ice Level							
255																	
256							As	suming Nor	mal Distribut								
257			959	% Norma						95			sted for Sk				
258					95% Stu	udent's-t	UCL	40.13	600				ed-CLT UCL	•	1	48.64	
259									698		95% N	Modifi	ed-t UCL (J	ohnson	1978)	41.59	
260																	

261	A B C D E	F Gamma (G H I J K L								
261 262	A-D Test Statistic	5.596	Anderson-Darling Gamma GOF Test								
263	5% A-D Critical Value	0.76	Data Not Gamma Distributed at 5% Significance Level								
264	K-S Test Statistic	0.532	Kolmogrov-Smirnoff Gamma GOF Test								
265	5% K-S Critical Value	0.208	Data Not Gamma Distributed at 5% Significance Level								
266	Data Not Gamn	na Distributed at 5% Significance Level									
267											
268		Gamma	Statistics								
269	k hat (MLE)	1.332	k star (bias corrected MLE) 1.147								
270	Theta hat (MLE)	17.85	Theta star (bias corrected MLE) 20.73								
271	nu hat (MLE)	47.96	nu star (bias corrected) 41.3								
272	MLE Mean (bias corrected)	23.78	MLE Sd (bias corrected) 22.2								
273			Approximate Chi Square Value (0.05) 27.57								
274	Adjusted Level of Significance	0.0357	Adjusted Chi Square Value 26.5								
275											
276	Ass	suming Gam	ma Distribution								
277	95% Approximate Gamma UCL (use when n>=50))	35.62	95% Adjusted Gamma UCL (use when n<50) 37.06								
278											
279			GOF Test								
280	Shapiro Wilk Test Statistic	0.377	Shapiro Wilk Lognormal GOF Test								
281	5% Shapiro Wilk Critical Value	0.897	Data Not Lognormal at 5% Significance Level								
282	Lilliefors Test Statistic	0.516	Lilliefors Lognormal GOF Test								
283	5% Lilliefors Critical Value	0.209	Data Not Lognormal at 5% Significance Level								
284	Data Not L	ognormal at	5% Significance Level								
285											
286		Lognorma									
287	Minimum of Logged Data	2.526	Mean of logged Data 2.749								
288	Maximum of Logged Data	5.193	SD of logged Data 0.687								
289											
290			rmal Distribution								
291	95% H-UCL	28.66	90% Chebyshev (MVUE) UCL 29.51								
292	95% Chebyshev (MVUE) UCL	34.06	97.5% Chebyshev (MVUE) UCL 40.37								
293	99% Chebyshev (MVUE) UCL	52.77									
294	Nonnoromo	tria Diatribu	tion Free UCL Statistics								
295	•		ernible Distribution (0.05)								
296	Data do not le	oliow a Disc	enible distribution (0.03)								
297	Nonnar	ametric Dis	ribution Free UCLs								
298	95% CLT UCL	39.24	95% Jackknife UCL 40.13								
299	95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL N/A								
300	95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL N/A								
301	95% BCA Bootstrap UCL	N/A	35.5. 3.55.1.1.0 255.6.1.4p 652								
302	90% Chebyshev(Mean, Sd) UCL	51.97	95% Chebyshev(Mean, Sd) UCL 64.74								
303	97.5% Chebyshev(Mean, Sd) UCL	82.47	99% Chebyshev(Mean, Sd) UCL 117.3								
304	,		, , , , , , , , , , , , , , , , , , , ,								
305 306		Suggested	UCL to Use								
306	95% Chebyshev (Mean, Sd) UCL	64.74									
308											
308	Note: Suggestions regarding the selection of a 95%	UCL are pr	ovided to help the user to select the most appropriate 95% UCL.								
310		•	mulation studies summarized in Singh, Singh, and laci (2002)								
311	and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.										
312			ay want to consult a statistician.								
UIZ											

	Α		В		С		D	E		F	G	Н	1		J		K	L
313																		
314	E2																	
315	rj																	
316										General	Statistics							
317					Total	Numb	her of C	Observa	ations	18	Jiausucs		Ni	mher c	of Distinct	Ohear	vations	5
318					rolal	INUIII	nei OI (JUS€I Võ	นเปเช	10					of Missing			0
319								Min	imum	45			inui	mbel 0	, iviiooiiiy	CDSEI	Mean	142.5
320									imum	1300							Median	45
321								IVIAX	SD	296.1					Std		of Mean	69.79
322						Coe	efficien	t of Var		2.078					Olu.		ewness	3.932
323								. Or val		2.070						ON		3.332
324								Normal	GOF Test									
325					SI.	hanir	o Wilk	Test Sta	atistic	0.376			Shanir	o Wilk	GOF Te	st		
326						•		Critical \		0.897		Data N	Not Norma				evel	
327					2,001	-		Test Sta		0.377		- Data I			OF Test			
328					59			Critical \		0.209		Data N	Not Norma			ance I 4	evel	
329						, C = IIII	2.3.5				5% Significa				grillion	OO L		
330									101		- Jo Olgimiodi	20101						
331									Ass	sumina Nor	mal Distribut	tion						
332				9	95% No	ormal	UCI		, 101		2.0011001		% UCLs ((Adiust	ed for Sk	(ewnes	s)	
333					/ - 110			dent's-t	t UCL	263.9					-CLT UCI		-	326.4
334														-	l-t UCL (J		-	274.7
335															(0		/	
336							Gamma GOF Test											
337							A-D	Test Sta	atistic	3.761	Anderson-Darling Gamma GOF Test							
338						5%		Critical \		0.773	Data Not Gamma Distributed at 5% Significance Level							
339 340								Test Sta		0.416	Kolmogrov-Smirnoff Gamma GOF Test							
340						5%	6 K-S C	Critical \	Value	0.211	D	ata Not Ga						el
341											⊥ ed at 5% Sig							
343																		
344										Gamma	Statistics							
345								k hat (MLE)	0.852				k sta	ar (bias c	orrecte	d MLE)	0.747
346							The	ta hat (MLE)	167.2			Th	neta sta	ar (bias c	orrecte	d MLE)	190.7
347							ı	nu hat (MLE)	30.68					nu star (b	ias cor	rected)	26.9
348					ML	LE Me	ean (bia	as corre	ected)	142.5				N	/ILE Sd (b	oias cor	rected)	164.8
349													Approxi	mate C	Chi Squar	e Value	e (0.05)	16.08
350					Adjus	sted Le	evel of	Signific	cance	0.0357				Adju	usted Chi	Square	e Value	15.27
351											1							
352									Ass	suming Gan	nma Distribu	tion						
353		95%	Approx	imate (Gamma	UCL	(use w	hen n>	=50))	238.5		95% A	Adjusted C	Gamma	a UCL (us	se wher	n n<50)	251
354											1							
355										Lognorma	I GOF Test							
356					S	hapiro	o Wilk	Test Sta	atistic	0.592		Sha	apiro Will	k Logn	ormal GC	OF Tes	t	
357	5% Shapiro Wilk Critical Value			Value	0.897	Data Not Lognormal at 5% Significance Level												
358	Lilliefors Test Statistic				atistic	0.415		L	Lilliefors L	ognor	mal GOF	Test						
359	5% Lilliefors Critical Value				0.209	0.209 Data Not Lognormal at 5% Significance Level												
360								Data	Not L	ognormal a	t 5% Signific	ance Leve	I					
361																		
362										Lognorma	al Statistics							
363					ı	Minim	ium of I	Logged	Data	3.807	700				Mean	of logge	ed Data	4.269
364					N	Maxim	um of I	Logged	Data	7.17					SD	of logge	ed Data	0.916
1											1							

	Α	В	С	D	Е	F	G	Н		J	K	L		
365														
366						uming Logno	rmal Distrib	ution				180.2		
367					95% H-UCL	190.3		90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL						
368			95%	Chebyshev (MVUE) UCL	214.1		261.2						
369			99%	Chebyshev (MVUE) UCL	353.7								
370														
371		Nonparametric Distribution Free UCL Statistics												
372				Ι	Data do not f	ollow a Disc	ernible Distr	ibution (0.0	5)					
373														
374					Nonpa	rametric Dist	tribution Fre	e UCLs						
375		95% CLT UCL 257.3 95% Jackknife UCL												
376			95%	Standard Bo	otstrap UCL	249.3		898.8						
377			9	5% Hall's Bo	otstrap UCL	675.2		271.9						
378			!	95% BCA Bo	otstrap UCL	341.7								
379			90% Ch	ebyshev(Me	an, Sd) UCL	351.9		95% Chebyshev(Mean, Sd) UCL						
380			97.5% Ch	ebyshev(Me	an, Sd) UCL	578.4		836.9						
381														
382						Suggested	UCL to Use							
383			95% Ch	ebyshev (Me	an, Sd) UCL	446.7								
384														
385	Note: Currentians regarding the colorion of a 0E9/ LICL are provided to help the uper to color the most appropriate 0E9/ LICL													
386		These reco	ommendatio	ns are based	upon the res	sults of the si	mulation stud	dies summai	rized in Singl	n, Singh, and	laci (2002)			
387	and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.													
388				For ad	ditional insig	ht the user m	nay want to c	onsult a stat	istician.					
389														

	A B C	D E	F stics for Unc	G ensored Full	H Data Sets	I	J	K	L			
1												
2	User Selected Option	ns										
3	Date/Time of Computation											
<u>4</u> 5	From File											
6	Full Precision	ı OFF										
7	Confidence Coefficient											
8	Number of Bootstrap Operations	3 2000										
9												
10												
11	Zinc											
12												
13			General	Statistics								
	To!	al Number of Observations	18			Numbe	er of Distinct	Observations	18			
14								Observations	0			
15		Minimum	2.1					Mean	364			
16		Maximum						Median	68			
17		SD					Std F	Error of Mean	212.6			
18	 	Coefficient of Variation					Olu. I	Skewness	3.671			
19		Coomcident of Variation	2.470					OVEMUESS				
20	<u> </u>		Normal (GOF Test								
21		Shapiro Wilk Test Statistic		101 1631		Shaniro W	ilk GOF Tes	1				
22	50/-	•			Data No	-						
23	5/6	5% Shapiro Wilk Critical Value 0.897 Data Not Normal at 5% Significance Level										
24		Lilliefors Test Statistic		Lilliefors GOF Test								
25	5% Lilliefors Critical Value 0.209 Data Not Normal at 5% Significance Level											
26	Data Not Normal at 5% Significance Level											
27	Assuming Normal Distribution											
28	050/		suming Non	nai Distributi		LICL o /Adii	ustad for Cke					
29	95%	Normal UCL	722.0				usted for Ske	· ·	010.4			
30		95% Student's-t UCL	733.9			-		(Chen-1995)	910.4			
31						95% Modifi	lea-t UCL (Jo	hnson-1978)	764.6			
32			0	005.								
33		4 D.T. + O		GOF Test		- ·						
34		A-D Test Statistic				-	Gamma GC					
35		5% A-D Critical Value		Da				nificance Lev	el			
36		K-S Test Statistic		_	_		off Gamma G					
37		5% K-S Critical Value					ted at 5% Sig	nificance Lev	eı			
38		Data Not Gam	ma Distribute	ed at 5% Sigr	niticance Le	vel						
39				Ot-1' ''								
40		1		Statistics					- 0.070			
41		k hat (MLE)					•	rrected MLE)	0.378			
42		Theta hat (MLE)				Theta	,	rrected MLE)	963.7			
43		nu hat (MLE)					`	as corrected)	13.6			
44		MLE Mean (bias corrected)	364	MLE Sd (bias corrected					592.3			
45		usted Level of Significance	m -		•			Value (0.05)	6.298			
46	Adj	0.0357			A	djusted Chi S	Square Value	5.826				
47												
48				ıma Distributi								
49	95% Approximate Gamr	ma UCL (use when n>=50))	786.1		95% Ad	justed Gam	ma UCL (use	when n<50)	849.8			
50				700								
51				GOF Fest								
52		Shapiro Wilk Test Statistic	0.975		Shap	oiro Wilk Lo	gnormal GO	F Test				

EJ	A	В	C 5% S	D Shapiro Wilk C	E Critical Value	F 0.897	G	H Data appea	l or Lognorma	J I at 5% Signif	K icance Level	L			
53 54					Test Statistic	0.126	Lilliefors Lognormal GOF Test								
55			· · · · · · · · · · · · · · · · · · ·	5% Lilliefors C		0.209				l at 5% Signif					
56					Data appear	Lognormal	l at 5% Significance Level								
57															
58						Lognorma	l Statistics								
59				Minimum of I	Logged Data	0.742				Mean of	logged Data	4.293			
60				Maximum of I	Logged Data	8.243		1.836							
61															
62					Assı	uming Logno	rmal Distrib	ution							
63					95% H-UCL	2362			90%	Chebyshev (MVUE) UCL	821.9			
64			95%	Chebyshev (MVUE) UCL	1049			97.5%	Chebyshev (MVUE) UCL	1363			
65			99%	Chebyshev (MVUE) UCL	1981									
66															
67					Nonparame	etric Distribu	tion Free UC	L Statistics							
68				Data appea	r to follow a	Discernible	Distribution a	at 5% Signif	icance Leve	əl					
69															
70					Nonpa	rametric Dis	tribution Free	e UCLs							
71				95	5% CLT UCL	713.8				95% Ja	ckknife UCL	733.9			
72			95%	6 Standard Bo	ootstrap UCL	695.7				95% Boo	tstrap-t UCL	2753			
73				95% Hall's Bo	otstrap UCL	2112			95%	Percentile Bo	otstrap UCL	759			
74				95% BCA Bo	otstrap UCL	963.9									
75	90% Chebyshev(Mean, Sd) UCL					1002	95% Chebyshev(Mean, Sd) UCL					1291			
76	07 F0/ Chaharahaa/Maaa Cd) HCl					1692			99% C	hebyshev(Me	an, Sd) UCL	2480			
77											L				
78						Suggested	UCL to Use								
79			99% Ch	nebyshev (Me	an, Sd) UCL	2480									
80						11									
81		Note: Sugge	stions regar	ding the selec	ction of a 95%	UCL are pr	ovided to hel	p the user to	select the r	most appropri	ate 95% UCL				
82		These rec	ommendatio	ons are based	upon the res	ults of the si	mulation stud	dies summa	rized in Sing	h, Singh, and	l laci (2002)				
83			and Singh	h and Singh (2	2003). Howe\	er, simulatio	ns results wi	Il not cover a	all Real Wor	ld data sets.					
84				For ad	lditional insig	ht the user m	nay want to co	onsult a stat	istician.						
85															
86															
87	B(a)P														
88															
89							Statistics								
90			Tota	al Number of C	Observations	18				er of Distinct (8			
91									Numbe	r of Missing (0			
92					Minimum	0.05					Mean	1.014			
93					Maximum	10					Median	0.05			
94					SD	2.39				Std. E	rror of Mean	0.563			
95				Coefficien	t of Variation	2.357					Skewness	3.509			
96															
97							GOF Test								
98				Shapiro Wilk		0.467			•	ilk GOF Test					
99			5% S	Shapiro Wilk C		0.897		Data No		5% Significar	nce Level				
100	<u></u>				Test Statistic	0.343				GOF Test					
101	<u></u>			5% Lilliefors C		0.209			ot Normal at	5% Significar	nce Level				
102					Data Not	Normal at 5	5% Significar 703	nce Level							
103															
104					As	suming Nori	mal Distribut	ion							

105	A B C D E 95% Normal UCL	F	G H I J K L 95% UCLs (Adjusted for Skewness)
105 106	95% Student's-t UCL	1.994	95% Adjusted-CLT UCL (Chen-1995) 2.438
107			95% Modified-t UCL (Johnson-1978) 2.072
107			<u> </u>
109		Gamma	GOF Test
110	A-D Test Statistic	2.442	Anderson-Darling Gamma GOF Test
111	5% A-D Critical Value	0.825	Data Not Gamma Distributed at 5% Significance Level
112	K-S Test Statistic	0.364	Kolmogrov-Smirnoff Gamma GOF Test
113	5% K-S Critical Value	0.219	Data Not Gamma Distributed at 5% Significance Level
114	Data Not Gamr	ma Distribute	ed at 5% Significance Level
115			
116		Gamma	Statistics
117	k hat (MLE)	0.379	k star (bias corrected MLE) 0.353
118	Theta hat (MLE)	2.672	Theta star (bias corrected MLE) 2.87
119	nu hat (MLE)	13.66	nu star (bias corrected) 12.72
120	MLE Mean (bias corrected)	1.014	MLE Sd (bias corrected) 1.706
121		<u> </u>	Approximate Chi Square Value (0.05) 5.704
122	Adjusted Level of Significance	0.0357	Adjusted Chi Square Value 5.258
123			
124	Ass	suming Gam	ma Distribution
125	95% Approximate Gamma UCL (use when n>=50))	2.261	95% Adjusted Gamma UCL (use when n<50) 2.452
126			
127		Lognormal	GOF Test
128	Shapiro Wilk Test Statistic	0.732	Shapiro Wilk Lognormal GOF Test
129	5% Shapiro Wilk Critical Value	0.897	Data Not Lognormal at 5% Significance Level
130	Lilliefors Test Statistic	0.37	Lilliefors Lognormal GOF Test
131	5% Lilliefors Critical Value	0.209	Data Not Lognormal at 5% Significance Level
132	Data Not L	ognormal at	5% Significance Level
133			
134		Lognorma	I Statistics
135	Minimum of Logged Data	-2.996	Mean of logged Data -1.735
136	Maximum of Logged Data	2.303	SD of logged Data 1.793
137			
138	Assu	ıming Logno	rmal Distribution
139	95% H-UCL	4.887	90% Chebyshev (MVUE) UCL 1.829
140	95% Chebyshev (MVUE) UCL	2.329	97.5% Chebyshev (MVUE) UCL 3.023
141	99% Chebyshev (MVUE) UCL	4.385	
142			
143	Nonparame	tric Distribu	tion Free UCL Statistics
144	Data do not fe	ollow a Disc	ernible Distribution (0.05)
145			
146	· · · · · · · · · · · · · · · · · · ·	rametric Dist	tribution Free UCLs
147	95% CLT UCL	1.941	95% Jackknife UCL 1.994
148	95% Standard Bootstrap UCL	1.905	95% Bootstrap-t UCL 4.219
149	95% Hall's Bootstrap UCL	4.823	95% Percentile Bootstrap UCL 2.092
150	95% BCA Bootstrap UCL	2.636	
151	90% Chebyshev(Mean, Sd) UCL	2.704	95% Chebyshev(Mean, Sd) UCL 3.469
152	97.5% Chebyshev(Mean, Sd) UCL	4.532	99% Chebyshev(Mean, Sd) UCL 6.619
153			'
154		Suggested	
155	99% Chebyshev (Mean, Sd) UCL	6.619	704
156			

	Α	A B C D E F G H I J K L									L		
157	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.												
158		These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002)											
159	and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.												
160	For additional insight the user may want to consult a statistician.												
161													

Table T2 - Summary of Groundwater Analytical Results

					Heavy	Metals					PAHs				BTEX				T	RHs				P	FAS
Sample Identific	eation	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	Total PAHs	Benzo(a)pyrene	Naphthalene	Benzene	Toluene	Ethylbenzene	o-xylene	m/p-xylene	F1	F2	F3	F4	VOCs Total	Phenols (Total)	PFOS	PFOA
BH1M-1		6	<0.1	3	85	3	<0.1	3	110	2	<0.2 *	<0.2 *	<0.5	<0.5	< 0.5	<1	< 0.5	160	190	<1000 *	<1000 *	20	<0.05	NA	NA
BH9M-1		3	<0.1	<1	2	1	<0.1	<1	10	<1	<0.1	<0.1	<0.5	<0.5	< 0.5	<1	< 0.5	<50	<60	<500	<500	<10	< 0.05	NA	NA
BH10M-1		<1	<0.1	<1	65	2	<0.1	2	92	<1	<0.1	<0.1	<0.5	<0.5	<0.5	<1	<0.5	<50	<60	<500	<500	<10	< 0.05	NA	NA
Maximum Concer	ntration	6	<0.1	3	85	3	<0.1	3	110	2	<0.2	<0.1	<0.5	<0.5	<0.5	<1	<0.5	160	190	<1000	<1000	20	<0.05	NA	NA
95% UCL		NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
											GILs														
	Fresh Water ⁴	24 (AsIII) 13 (AsV)	1.04 ^{H1}	4.50 ^{H1} (CR VI)	6.2 ^{H1}	40.61 H1	0.06 ³	52.76 ^{H1}	38.37 ^{H1}			16	950	180 ⁹	80 ⁹	350 ⁹	275 ⁹	50 ⁸	60 ⁸	500 ⁸	500 ⁸		320		
GIL	Recreational Water ^{6,7}	100	20	500	20,000	100	10	200			0.01		1	800	300	6	00								
	Direct Contact 11	1000	200	5,000	200,000	1,000	100	2,000			0.1		10	8,000	3,000	6,0	000								

Notes:

All values are $\mu g/L$ unless stated otherwise

NL = Not Limiting

NA = 'Not Analysed' i.e. the sample was not analysed.

ND = Not Detected - i.e. concentration below the laboratory PQL

F1 = (C6-C10) minus BTEX.

F2 = (>C10-C16) minus Naphthalene.

F3 = (>C16-C34).

F4 = (>C34-C40).

H1 = Modified hardness trigger values

1 = Values have been calculated using a hardness of 30mg/L CaCO3 refer to ANZECC & ARMCANZ (2000) for further guidance on recalculating for site-specific hardness

2 = Figure may not protect key species from chronic toxicity, refer to ANZAST (2018) for further guidance

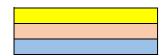
3 = Chemical for which possible bioaccumulation and secondary poisoning effects should be considered, refer to ANZAST (2018) for further guidance

4 = NEPM (2013) Groundwater Investigation Levels for fresh and marine water quality, based on ANZAST (2018).

5 = NEPC (2013) Table 1A(4) Groundwater HSL A&B and HSL D for vapour intrusion at the contaminant source depth ranges in sand 2m to <4m, as a conservative approach.

6 = NEPM (2013) Groundwater Investigation Levels for drinking water quality, based on Australian Drinking Water Guidelines (NHMRC 2017).

7 = Drinking Water value has been used multiplied by a factor of 10 to address the secondary contact recreation.


8 = In lack of a criteria the laboratory PQL has been used (DEC, 2007).

9 = Low reliability toxicity data, refer to ANZECC & ARMCANZ (2000)

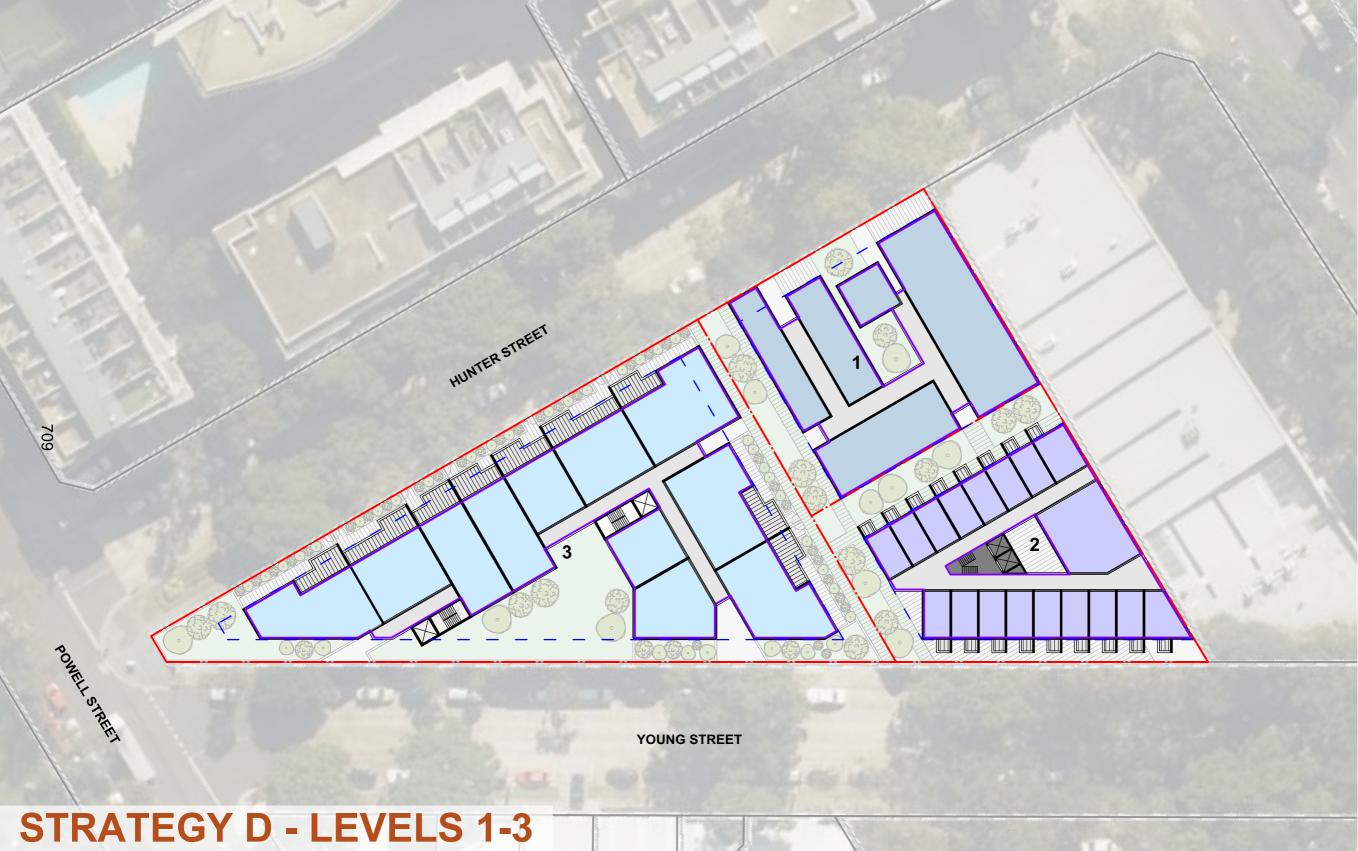
10 = Maximum concentration derived from duplicate sample

11 = Australian Drinking Water Guidelines multiplied by 100

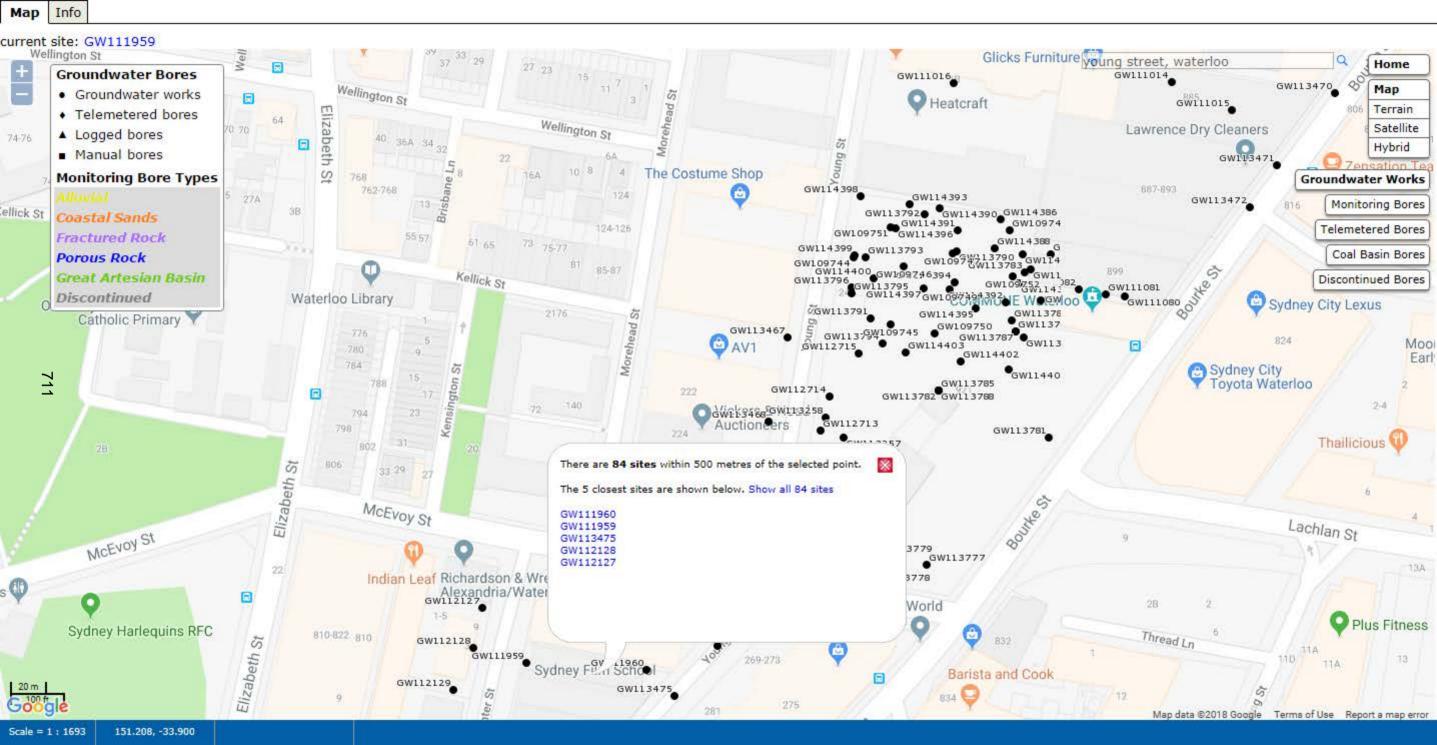
* = laboratory PQL has been raised due to interferences from the sample matrix

Highlighted indicates analyte concentration value exceeding the adopted human health criteria

Highlighted indicates analyte concentration value exceeding the adopted recreational and direct criteria


Highlighted indicates criteria exceeded

APPENDIX A Proposed Development Plans



APPENDIX B Groundwater Bore Search

APPENDIX CSite Photographs

Photograph 1: Commercial building (film school) located at 242-244 Young Street, Waterloo (the site), looking south-east.

Photograph 2: Manufacturing workshop located at the site, looking south-west.

713

Photograph 3: Commercial building (offices) located at the site, north.

Photograph 4: Interior of the manufacturing workshop located at the site.

714

APPENDIX D Historical Property Titles Search

ABN: 36 092 724 251 Ph: 02 9099 7400 Level 14, 135 King Street, Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

Report

NSW LRS (Formerly LPI) Sydney

Address: 242 & 244 - 258 Young Street, Waterloo

Description: - Lot 1 D.P. 84655 & Lots A & B D.P. 161650

As regards Lot 1 D.P. 84655

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
08.08.1912 (1912 to 1940)	James Hunter and Sons Limited Now James Hunter & Sons Pty. Limited	Book 976 No. 257
18.03.1940 (1940 to 1968)	Gordon Marr & Sons Pty. Limited	Book 1867 No. 316 Now Vol 5239 Fol 116
01.11.1968 (1968 to 1986)	P. Rowe Pty Limited	Vol 5239 Fol 116
27.05.1986 (1986 to 1986)	Leda Holdings Pty Limited	Vol 5239 Fol 116
03.11.1986 (1986 to 1991)	Baese Pty. Limited	Vol 5239 Fol 116 Now 1/84655
29.01.1991 (1991 to 1998)	Tridu Pty. Limited	1/84655
20.05.1998 (1998 to 2013)	Coates Signco Manufacturing Pty Limited Now Alan Coates Pty Limited	1/84655
04.01.2013 (2013 to Date)	# International Screen Academy Property Pty Ltd	1/84655

Denotes Current Registered Proprietor

Easements: -

• 28.07.1986 (D.P. 638902) – Easement for Support

Leases: -

- 01.11.1968 (L301856) Gordon Marr & Sons Proprietary Limited expired 17.05.1979
- Numerious Leases were found from 29.01.1991 to 30.11.2010 that have since expired due to effluxion of time, or have been surrendered these have not been investigated
- 16.05.2013 (AH734086) International Screen Academy Property Pty Limited of 242 Young Street, Waterloo expires 17.12.2015
 26.07.2016 (AK625515) expiry date now 31.12.2017

ABN: 36 092 724 251 Ph: 02 9099 7400 Level 14, 135 King Street, Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

As regards Lot A D.P. 161650

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
08.08.1912 (1912 to 1956)	James Hunter and Sons Limited Now James Hunter & Sons Pty. Limited	Book 976 No. 257
10.05.1956 (1956 to 1968)	Gordon Marr & Sons Pty. Limited	Book 2387 No. 363 Now Vol 8211 Fol 238
01.11.1968 (1968 to 1982)	P. Rowe Pty Limited	Vol 8211 Fol 238
16.03.1982 (1982 to 1989)	Perpetual Trustee Company Limited	Vol 8211 Fol 238
16.03.1989 (1989 to 1995)	John Malcolm Sandilands Beverley Ann Sandilands	Vol 8211 Fol 238 Now A/161650
02.03.1995 (1995 to 1998)	Beverley Ann Sandilands	A/161650
23.04.1998 (1998 to Date)	# Charvic Pty Limited	A/161650

Denotes Current Registered Proprietor

Easements: -

- 28.07.1986 (D.P. 638902) Easement for Support
- 28.07.1986 (D.P. 638902) Easement for Maintenance of Gutter

Leases: -

- 01.11.1968 (L301856) Gordon Marr & Sons Proprietary Limited expired 17.05.1979
- 01.07.1982 (T72760) P. Rowe Pty Limited expired 15.09.1988
- 15.09.1988 (X837002) P. Rowe Fabrics Pty. Limited surrendered 06.05.1994
- 06.05.1994 (U241772) expired due to effluxion of time, or has been surrendered this has not been investigated
- 20.12.2007 (AD653553) expired due to effluxion of time, or has been surrendered this has not been investigated
- 19.05.2017 (AM405465) Paramount Property Group Pty Limited of Factory, 244 Young Street, Waterloo together with 38 on-site parking spaces numbered 1–38. expires 01.04.2002 option of renewal 2 years

ABN: 36 092 724 251 Ph: 02 9099 7400

Level 14, 135 King Street, Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

As regards Lot B D.P. 161650

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
08.08.1912 (1912 to 1966)	James Hunter and Sons Limited Now James Hunter & Sons Pty. Limited	Book 976 No. 257 Now Vol 7448 Fol 29
28.01.1966 (1966 to 1982)	P. Rowe Pty Limited	Vol 7448 Fol 29
16.03.1982 (1982 to 1989)	Perpetual Trustee Company Limited	Vol 7448 Fol 29
16.03.1989 (1989 to 1995)	John Malcolm Sandilands Beverley Ann Sandilands	Vol 7448 Fol 29 Now B/161650
02.03.1995 (1995 to 1998)	Beverley Ann Sandilands	B/161650
23.04.1998 (1998 to Date)	# Charvic Pty Limited	B/161650

Denotes Current Registered Proprietor

Easements: -

- 01.04.2009 (D.P. 1136961) Easement for Electricity and Other Purposes 3.365 metre(s) wide
- 01.04.2009 (D.P. 1136961) Right of Carriageway 6.8 metre(s) wide

Leases: -

- 01.07.1982 (T72760) P. Rowe Pty Limited expired 15.09.1988
- 15.09.1988 (X837002) P. Rowe Fabrics Pty. Limited surrendered 06.05.1994
- 06.05.1994 (U241772) expired due to effluxion of time, or has been surrendered this has not been investigated
- 20.12.2007 (AD653553) expired due to effluxion of time, or has been surrendered this has not been investigated
- 19.05.2017 (AM405465) Paramount Property Group Pty Limited of Factory, 244 Young Street, Waterloo together with 38 on-site parking spaces numbered 1–38. expires 01.04.2002 option of renewal 2 years

Cadastral Records Enquiry Report: Lot A DP 161650

Parish: ALEXANDRIA

Locality: WATERLOO

LGA: SYDNEY County: CUMBERLAND SF KENSINGTON ST MOREHEAD ST DP 592165 COUNCH OF THE MCEVOY ST SP 69746 ELIZABETH ST CITY SP 94123 DP 748007 OF SYDNEY DP 84655 HUNTER ST 19 ARCHIBALDAVE SP 71241 BOURKEST SP 86758 POWELL ST DUNKERLEYPL 0 8.5

Report Generated 8:16:55 AM, 16 July, 2018 Copyright © Crown in right of New South Wales, 2017

This information is provided as a searching aid only. Whilst every endeavour is made to ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps

Ref: NOUSER

10 20 30 40 50 60 70 Table of mm 110 120 130 140

Registrar General this day.

20th June, 1990

CONVERSION TABLE ADDED IN REGISTRAR GENERAL'S DEPARTMENT METRES 0.032 0.051 0.470 3.620 3.658 3.664 3.683 3.683 1 5 1/2 11 10 1/2 12 - 1/2 12 1 2 1/2 12 1 1/2 12 1 1/2 12 1 1/2 13 1/4 50 - 1/2 54 1 3/4 56 - 77 - 1 125 3 1/4 159 5 1/4 159 1 1/2 1164 4 1/2 211 6 1/4 - 1 1 1/2 1050 AC RD P 74.87

20

721

Historical Title

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

3/7/2018 6:13PM

FOLIO: 1/84655

First Title(s): SEE PRIOR TITLE(S)

Prior Title(s): VOL 5239 FOL 116

Recorded	Number	Type of Instrument	C.T. Issue
2/9/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
22/5/1990		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
19/11/1990	Z 340072	CAVEAT	
28/11/1990	DP644174	DEPOSITED PLAN	EDITION 1
5/12/1990	Z370018	CAVEAT	
22/1/1991 22/1/1991 22/1/1991 22/1/1991 22/1/1991		WITHDRAWAL OF CAVEAT WITHDRAWAL OF CAVEAT DISCHARGE OF MORTGAGE DISCHARGE OF MORTGAGE DISCHARGE OF MORTGAGE	EDITION 2
29/1/1991 29/1/1991 29/1/1991	Z438290	TRANSFER MORTGAGE LEASE	EDITION 3
3/2/1994	1995265	VARIATION OF LEASE	EDITION 4
28/2/1995	051110	LEASE	EDITION 5
4/9/1997		AMENDMENT: LOCAL GOVT AREA	
20/5/1998 20/5/1998 20/5/1998	3998514 3998515 3998516	DISCHARGE OF MORTGAGE TRANSFER MORTGAGE	EDITION 6
14/3/2004	AA472866	DEPARTMENTAL DEALING	
31/10/2005	AB876363	LEASE	EDITION 7
30/11/2010 30/11/2010 30/11/2010	AF717502 AF717503	LEASE	EDITION 8
30/11/2010	AF911416	DEPARTMENTAL DEALING	EDITION 9

END OF PAGE 1 - CONTINUED OVER

waterloo

PRINTED ON 3/7/2018

SEARCH DATE

3/7/2018 6:13PM

FOLIO: 1/8	4655		PAGE 2
Recorded	Number	Type of Instrument	C.T. Issue
24/8/2012	AH195909	CAVEAT	
31/10/2012	AH310950	CAVEAT	
18/12/2012 18/12/2012 18/12/2012	AH446824 AH446825 AH446826	WITHDRAWAL OF CAVEAT WITHDRAWAL OF CAVEAT CAVEAT	
4/1/2013 4/1/2013 4/1/2013	AH466173 AH466174 AH466175	DISCHARGE OF MORTGAGE REQUEST TRANSFER	EDITION 10
16/5/2013	AH734086	LEASE	EDITION 11
26/8/2014	AI844090	VARIATION OF LEASE	
26/7/2016	AK625515	VARIATION OF LEASE	

*** END OF SEARCH ***

waterloo

PRINTED ON 3/7/2018

InfoTrack an approved NSW Information Broker hereby certifies that the Information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Copyright @ Office of the Registrar-General 2018

Received: 03/07/2018 18:13:38

f:waterlo	/Doc:DL Z438289 /Rev:09-Jul-2010 / o /Src:MSTAMPDUTY S1.00	early.	438289 B
POIL	OFFICE OF STATE REV OFFICE OF STATE REV TRAN 180/81 REAL PROPER Comparison for Comparison f	TY ACT, 1900	3 6 0 7 X R1 3
DESCRIPTION	Torrens Title Reference If Part Onl	, Delete Whole and Give Details	Location
DESCRIPTION OF LAND Note (a)	Folio Identifier 1/84655	WHOLE	Waterloo
TRANSFEROR Note (b)	BAESE PTY. LIMITED		
STATE	(the abovenamed TRANSFEROR) hereby acknowledges receipt of the con-	sideration of \$ 1,700,000.00	ng na Vinding a
lote (c)	and transfers an estate in fee simple	* or	
RANSFEREE ote (b)	TRIDU PTY. LIMITED, a duly incorporated c 3 Smail Street, Broadway	ompany of Suite 628, 6th	n Floor,
ENANCY			0
ote (d)	as joint tenante/tenants in common		
RIOR NCUMBRANCES ote (e)	subject to the following PRIOR ENCUMBRANCES 1. DP638902 Ea.	3.	
	DATE OF TRANSFER 6th December 1990		والمنظل والمساعلين
888100	We hereby certify this dealing to be correct for the purposes of the Real Principal Common Seath of BAESE PTY. LIMITED was hereunto affixed by authority of the common to the presence of:) Name of Witness (BLOCK LETTERS)	Seal M	Director
	Secretaryddess and occupation of Wilness Signed in my presence by the transferee who is personally known to me		Signature of Transferor
00 00 00 00 00 00 00 00 00 00 00 00 00	THE COMMON SEAL of TRIDU PTY. LIMITED was hereunto affixed by authority of the board of Directors, and in the presence of:)	A.	Senl -
	Secretar didiress and occupation of Witness		Signature of Transferee
BE COMPLETED LODGING PARTY es (g) (h)	LODGED BY . Jestpac Banking Corporation THE BANKING HOUSE, 228 PITT STRE SYDNEY 2000. PHONE: 260-6756 DELIVERY BOX No. 377	ET WY, DN, Herew	ition of documents with,
	Ret.: 032027 910836 S. Delivery Box Number	Produ	ced by
ICE USE ONLY	Checked Passed REGISTERED 19	Secondary Directions	
	Signed Extra Fee 29 JAN 1991	Delivery Olirections	2438288

	Form: 97-01T Licenæ: AUS/0634/96 Instructions for filling out	TRANSFER New South Wales Real Property Act 1900
	this form are available from the Land Titles Office	Office of State Revenue use only
		000288 1855 04 501438295703 85"00
		M-S-M- GLUMD DOLLA
(A)	LAND TRANSFERRED If appropriate, specify the share or part transferred.	1/84655
(B)	LODGED BY	Name, Address or DX and Telephone NATIONAL AUSTRALIA BANK LIMITED National Australia Bank Limited 255 George Street, Sydney 237 - 1111 FAX 237 - 1284 Reference 13 character maximum:
(C)	TRANSFEROR TR	IDU PTY LIMITED ACN 001 958 854
(D)	acknowledges receipt of the c	ousideration of \$1,630,000.00
		ed above transfers to the transferee an estate in see simple.
(E)	Encumbrances (if applicable):	1
(F)	TRANSFEREE T TS	COATES SIGNCO MANUFACTURING PTY LIMITED
(0)	TS (\$713 LGA) TW	ACN 067 970 807
(G)		ACN 067 970 807 TENANCY:
(H)	(Sheriff) We certify this dealing correct Signed in my presence by the Signature of	ACN 067 970 807 TENANCY: It for the purposes of the Real Property Act 1900. DATE (4.5.98. transferor who is personally known to me. FRIBUTED SECRETARY A.G.N. 001 958 850
(H)	(Sheriff) We certify this dealing correct Signed in my presence by the Signature of	ACN 067 970 807 TEMANCY: It for the purposes of the Real Property Act 1900. DATE 4.5 98 transferor who is personally known to me. TRIBUTED SECRETARY AG.N. 001 958 854
(H)	We certify this dealing correct Signed in my presence by the Signature of Witness (B)	ACN 067 970 807 TENANCY: It for the purposes of the Real Property Act 1900. DATE transferor who is personally known to me. Witness LOCK LETTERS) DIRECTOR.
(11)	We certify this dealing correct Signed in my presence by the Signature of Witness (B)	ACN 067 970 807 TENANCY: It for the purposes of the Real Property Act 1900. DATE transferor who is personally known to me. TRIBUTED SECRETARY SECRETARY DIRECTOR.
(11)	We certify this dealing correct Signed in my presence by the Signature of Witness (B)	ACN 067 970 807 TENANCY: It for the purposes of the Real Property Act 1900. DATE transferor who is personally known to me. Witness Witness Witness Signature of Transferor Transferee who is personally known to me.
(11)	We certify this dealing correct Signed in my presence by the Signature of Witness (B. Address of Signed in my presence by the Signed	ACN 067 970 807 TENANCY: It for the purposes of the Real Property Act 1900. DATE transferor who is personally known to me. Witness Witness Signature of Transferor transferee who is personally known to me.

irm name: Clinch I Limited PRIVACY NOT required by the Register is ma	egal Software Pty L ong Letherbarrow I E: Section 31B of s form for the esta de available to any	Real Property the Real Property Act 1900 (RP A blishment and maintenance of the person for search upon paymen	uth Wales inty Act 19i ct) authoric e Real Property	AF717501C Act Register. Section 96B RP Act	requires that t
A) LAND	Torrens Tit 1/84655	le			
B) REGISTERED DEALING	Number		Tor	rens Title	
C) LODGED BY	Delivery Box 479P	DX I	h Long Letherba	rrow Pty Limited MARKET STREET	CODE
D) REGISTERED PROPRIETOR	COATES	Reference: DJW:JAQ:10003		ACN 067 970 807	CN
E) NEW NAME					
,		ATES PTY LIMITED ACN 067	H	ø	
The abovename Register in resp STATUTORY DE I Alan Bernard solemnly and si	d registered proprect of that land. CLARATION BY TO Coates, neerely declare the	ietor of the land referred to about	H	e his/her new name recorded in t	the
The abovename Register in resp STATUTORY DE I Alan Bernard solemnly and si . I am the Sole D	d registered propriect of that land. CLARATION BY THE Coates, incerely declare the rector/Secretary of the Coates Signco March 1988.	ietor of the land referred to about HE APPLICANT at- of the Registered Proprietor;	e applies to have		

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 1/84655

TIME ____ EDITION NO _____

DATE ----

------13/7/2018 10:46 AM

SEARCH DATE

11 16/5/2013

LAND

LOT 1 IN DEPOSITED PLAN 84655 LOCAL GOVERNMENT AREA SYDNEY PARISH OF ALEXANDRIA COUNTY OF CUMBERLAND TITLE DIAGRAM DP84655

FIRST SCHEDULE

INTERNATIONAL SCREEN ACADEMY PROPERTY PTY LTD

(T AH466175)

SECOND SCHEDULE (7 NOTIFICATIONS)

RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S) 1

DP638902 EASEMENT FOR SUPPORT AFFECTING THE PART OF THE LAND WITHIN DESCRIBED SHOWN SO BURDENED IN DP638902

3 DP638902 EASEMENT FOR SUPPORT APPURTENANT TO THE LAND ABOVE DESCRIBED

DP638902 EASEMENT FOR MAINTENANCE OF GUTTER APPURTENANT TO 4 THE LAND ABOVE DESCRIBED

DP644174 EASEMENT FOR SUPPORT APPURTENANT TO THE LAND ABOVE 5 DESCRIBED

6 DP644174 EASEMENT FOR MAINTENANCE OF GUTTER AND FLASHING APPURTENANT TO THE LAND ABOVE DESCRIBED

AH734086 LEASE TO INTERNATIONAL SCREEN ACADEMY PTY LIMITED OF 242 YOUNG STREET, WATERLOO. EXPIRES: 17/12/2015.

AI844090 VARIATION OF LEASE AH734086

AK625515 VARIATION OF LEASE AH734086 EXPIRY DATE NOW 31/12/2017.

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

PRINTED ON 13/7/2018

^{*} Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 958(2) of the Real Property Act 1900.

Historical Title

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

3/7/2018 6:13PM

FOLIO: A/161650

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 8211 FOL 238

Recorded 31/8/1989	Number	Type of Instrument TITLE AUTOMATION PROJECT	C.T. Issue LOT RECORDED FOLIO NOT CREATED
11/10/1989		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
6/5/1994 6/5/1994	U241771 U241772	SURRENDER OF LEASE LEASE	EDITION 1
2/3/1995 2/3/1995 2/3/1995		DISCHARGE OF MORTGAGE TRANSFER MORTGAGE	EDITION 2
3/9/1997		AMENDMENT: LOCAL GOVT AREA	
23/4/1998 23/4/1998	3937680 3937682	DISCHARGE OF MORTGAGE TRANSFER	EDITION 3
14/3/2004	AA472866 AD653553	DEPARTMENTAL DEALING	EDITION 4
22/12/2008	AE406620	CAVEAT	
3/4/2009	AE595205	WITHDRAWAL OF CAVEAT	
5/7/2011	AG347378	VARIATION OF LEASE	
4/9/2012 4/9/2012	AH212838 AH212839	CHANGE OF NAME	
18/6/2015	AJ575230	VARIATION OF LEASE VARIATION OF LEASE	
19/5/2017	AM405464	SURRENDER OF LEASE	
19/5/2017	AM405465	LEASE	EDITION 5
1/6/2017	AM442236	CAVEAT	
15/6/2017	AM477806	CAVEAT	

END OF PAGE 1 - CONTINUED OVER

waterloo

PRINTED ON 3/7/2018

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE 3/7/2018 6:13PM

FOLIO: A/161650

PAGE

Recorded Number Type of Instrument -----

C.T. Issue

27/7/2017 AM596514 WITHDRAWAL OF CAVEAT

*** END OF SEARCH ***

waterloo

PRINTED ON 3/7/2018

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Copyright © Office of the Registrar-General 2018

Received: 03/07/2018 18:13:38

RP13	TRANSFER 0
	Office of 140B
(A) LAND TRANSFERRED Show no more than 20 References to Title. If appropriate, specify the share transferred.	VOLUME 8211 FOLIO 238 and Now being A/161650 VOLUME 7448 FOLIO 29 and B/161650
(B) LODGED BY	Name, Address or DX and Tolephone National Australia Bank House 255 George Street, Sydney 237 - 1111 FAX 237 - 1284 REFERENCE (max. 45 Agracters): T×3702
(C) TRANSFEROR	JOHN MALCOLM SANDILANDS
(E) subject to the following ENCUMBRANC	Court of Australia transfers to the transferse an estate in fee simple
(F) TRANSFEREE	EVERLEY ANN SANDILANDS CE joint tenants/tenants in common
F) TRANSFEREE B:	EVERLEY ANN SANDILANDS Composes of the Real Property Act, 1900. Who is personally known to me.
G) H) We certify this dealing correct for the purification in my presence by the transferor value of Witness JOANNA BUODE Name of Witness (BLOCK LETTE HENRIETTA 5	EVERLEY ANN SANDILANDS The second state of the Real Property Act, 1900. The second state of the Real Property Act, 1900. The second state of the Real Property Act, 1900. The second state of the Real Property Act, 1900. The second state of the Real Property Act, 1900. The second state of the Real Property Act, 1900. The second state of the Real Property Act, 1900. The second state of the Real Property Act, 1900. The second state of the Real Property Act, 1900. The second state of the Real Property Act, 1900. The second state of the Real Property Act, 1900. The second state of the Real Property Act, 1900. The second state of the Real Property Act, 1900. The second state of the Real Property Act, 1900. The second state of the Real Property Act, 1900. The second state of the Real Property Act, 1900. The second state of the Real Property Act, 1900. The second state of the Real Property Act, 1900. The second state of the Real Property Act, 1900. The second state of the second
By B	EVERLEY ANN SANDILANDS Control lenants/lenants in common Approves of the Real Property Act, 1900. DATE who is personally known to me. Who is personally known to me. Signature of transferor who is personally known to me.

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: A/161650

SEARCH DATE TIME EDITION NO DATE -----____ _____ ____ 13/7/2018 10:46 AM 5 19/5/2017

LAND

LOT A IN DEPOSITED PLAN 161650 AT WATERLOO LOCAL GOVERNMENT AREA SYDNEY PARISH OF ALEXANDRIA COUNTY OF CUMBERLAND TITLE DIAGRAM DP161650

FIRST SCHEDULE ------

CHARVIC PTY LIMITED

(T 3937682)

SECOND SCHEDULE (5 NOTIFICATIONS)

1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S) DP638902 EASEMENT FOR SUPPORT AFFECTING THE PART OF THE LAND SO BURDENED IN DP638902 3 DP638902 EASEMENT FOR SUPPORT APPURTENANT TO THE LAND ABOVE DESCRIBED DP638902 EASEMENT FOR MAINTENANCE OF GUTTER AFFECTING THE PART OF THE LAND SHOWN SO BURDENED IN DP638902 AM405465 LEASE TO PARAMOUNT PROPERTY GROUP PTY LIMITED OF FACTORY, 244 YOUNG STREET, WATERLOO TOGETHER WITH 38 ON-SITE PARKING SPACES NUMBERED 1-38. EXPIRES:

1/4/2020. OPTION OF RENEWAL: 2 YEARS.

AM442236 CAVEAT AFFECTING LEASE AM405465 CAVEAT BY HANSON PRECAST PTY LTD

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

waterloo

PRINTED ON 13/7/2018

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. Informack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Register. General in accordance with Section 268(2) of the Real Property Act 1990.

Historical **Title**

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

3/7/2018 6:13PM

FOLIO: B/161650

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 7448 FOL 29

Recorded	Number	Type of Instrument	C.T. Issue
29/7/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
17/1/1990		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
1/7/1992	E577823	DEPARTMENTAL DEALING	
6/5/1994 6/5/1994	U241771 U241772	SURRENDER OF LEASE LEASE	EDITION 1
2/3/1995	056952 056953 056954	DISCHARGE OF MORTGAGE TRANSFER MORTGAGE	EDITION 2
3/9/1997		AMENDMENT: LOCAL GOVT AREA	
23/4/1998 23/4/1998	3937681 3937682	DISCHARGE OF MORTGAGE TRANSFER	EDITION 3
14/3/2004	AA472866	DEPARTMENTAL DEALING	
20/12/2007	AD653553	LEASE	EDITION 4
22/12/2008	AE406620	CAVEAT	
1/4/2009	DP1136961	DEPOSITED PLAN	EDITION 5
3/4/2009	AE 595205	WITHDRAWAL OF CAVEAT	
5/7/2011	AG347378	VARIATION OF LEASE	
4/9/2012 4/9/2012	AH212838 AH212839	CHANGE OF NAME VARIATION OF LEASE	
18/6/2015	AJ575230	VARIATION OF LEASE	
19/5/2017 19/5/2017	AM405464 AM405465	SURRENDER OF LEASE LEASE	EDITION 6

END OF PAGE 1 - CONTINUED OVER

PRINTED ON 3/7/2018

waterloo

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE -----

3/7/2018 6:13PM

FOLIO: B/161650

PAGE

Recorded Number Type of Instrument ---------------AM442236 CAVEAT

C.T. Issue

1/6/2017

15/6/2017

AM477806

CAVEAT

27/7/2017

AM596514

WITHDRAWAL OF CAVEAT

*** END OF SEARCH ***

waterloo

PRINTED ON 3/7/2018

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Copyright @ Office of the Registrar-General 2018

Received: 03/07/2018 18:13:38

RP13	TRANSFER 0 056953
	Office of
(A) LAND TRANSFERRED	Walling contract of
Show no more than 20 References to Title. If appropriate, specify the share transferred.	VOLUME 8211 FOLIO 238 and Now being A/161650 VOLUME 7448 FOLIO 29 and B/161650
(B) LODGED BY	L.T.O. Box Name, Address or DX sud. Talenhone
	Name, Address or DX and Talephone AUSTRALIA BANK LIMITED National Australia Bank House 255 George Street, Sydney 237 - 1111 FAX 237 - 1284 REFERENCE (max. 455 Agaracters): T × 37 ° 2
(C) TRANSFEROR	JOHN MALCOLM SANDILANDS
and as regards the land specified above tr	ransfers to the transferee an estate in fee simple
and as regards the land specified above to subject to the following ENCUMBRANCE F) TRANSFEREE BE	EVERLEY ANN SANDILANDS
and as regards the land specified above to subject to the following ENCUMBRANCE F) TRANSFEREE BE	ransfers to the transferee an estate in fee simple ES 1. U241772 2
and as regards the land specified above to subject to the following ENCUMBRANCE F) TRANSFEREE BE	EVERLEY ANN SANDILANDS Solid tenants/tenants in common poses of the Real Property Act, 1900. DATE
and as regards the land specified above to subject to the following ENCUMBRANCE F) TRANSFEREE BE G) We certify this dealing correct for the purp	ES 1. U241772 2. 3. EVERLEY ANN SANDILANDS Out joint tenants/tenants in common- poses of the Real Property Act, 1900. DATE
and as regards the land specified above to subject to the following ENCUMBRANCE F) TRANSFEREE BE G) We certify this dealing correct for the purposing signed in my presence by the transferor we signed in my presence by the transferor we signature of witness Signature of Witness Name of Witness (BLOCK LETTER)	EVERLEY ANN SANDILANDS Set Joint tenants/tenants in common poses of the Real Property Act, 1900. DATE who is personally known to me.
and as regards the land specified above to subject to the following ENCUMBRANCE F) TRANSFEREE BE G) We certify this dealing correct for the purposition may presence by the transferor we signature of Witness JOANNA BUODE A	EVERLEY ANN SANDILANDS Set Joint tenants/tenants in common- poses of the Real Property Act, 1900. DATE who is personally known to me.
and as regards the land specified above to subject to the following ENCUMBRANCE F) TRANSFEREE BE G) We certify this dealing correct for the purp Signed in my presence by the transferor w Signature of Witness JOANNA BUODE A Name of Witness (BLOCK LETTER HENCLETTA ST	Tansfers to the transferee an estate in fee simple ES 1. U241772 2. 3. EVERLEY ANN SANDILANDS See Joint tenants/tenants in common poses of the Real Property Act, 1900. DATE who is personally known to me. Signature of Transferor Signature of Transferor
and as regards the land specified above to subject to the following ENCUMBRANCE F) TRANSFEREE BE G) We certify this dealing correct for the purposition my presence by the transferor we signed in my presence by the transferor we name of Witness JOANNA BUDGE A Name of Witness (BLOCK LETTER HENCIETTA STANDERS OF Witness Signed in my presence by the transferee where the signed in my presence by the signed in my presence by the transferee where the signed in my presence by the signed in my presence	ES 1. U241772 2. 3. EVERLEY ANN SANDILANDS Solvent tenants/tenants in common poses of the Real Property Act, 1900. DATE who is personally known to me. Signature of Transferor the is personally known to me.
and as regards the land specified above to subject to the following ENCUMBRANCE F) TRANSFEREE BE G) We certify this dealing correct for the purposition may presence by the transferor we signature of witness Signature of Witness Name of Witness (BLOCK LETTER HENCIETTA STANDERS OF Witness) Signed in my presence by the transferee with the standard	To be in the transferee an estate in fee simple ES 1. U241772 2. 3. EVERLEY ANN SANDILANDS See Joint tenants/tenants in common- poses of the Real Property Act, 1900. DATE who is personally known to me. The WAVERLEY Signature of Transferor the is personally known to me.

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: B/161650

SEARCH DATE TTMEEDITION NO DATE ------____ ______ ____ 13/7/2018 10:46 AM 6 19/5/2017

LAND

LOT B IN DEPOSITED PLAN 161650 AT WATERLOO LOCAL GOVERNMENT AREA SYDNEY PARISH OF ALEXANDRIA COUNTY OF CUMBERLAND TITLE DIAGRAM DP161650

FIRST SCHEDULE -----

CHARVIC PTY LIMITED

(T 3937682)

SECOND SCHEDULE (4 NOTIFICATIONS)

- RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- DP1136961 EASEMENT FOR ELECTRICITY AND OTHER PURPOSES 3.365 METRE(S) WIDE AFFECTING THE PART(S) SHOWN SO BURDENED IN DP1136961
- 3 DP1136961 RIGHT OF CARRIAGEWAY 6.8 METRE(S) WIDE AFFECTING THE PART(S) SHOWN SO BURDENED IN DP1136961
- AM405465 LEASE TO PARAMOUNT PROPERTY GROUP PTY LIMITED OF 4 FACTORY, 244 YOUNG STREET, WATERLOO TOGETHER WITH 38 ON-SITE PARKING SPACES NUMBERED 1-38. EXPIRES: 1/4/2020. OPTION OF RENEWAL: 2 YEARS.

AM442236 CAVEAT AFFECTING LEASE AM405465 CAVEAT BY HANSON PRECAST PTY LTD

NOTATIONS _____

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

waterloo

PRINTED ON 13/7/2018

^{*} Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 968(2) of the Real Property Act 1900.

APPENDIX EBorehole Logs

Date Started

Date Completed 15/8/18

1 OF 1

15/8/18

Sheet

Project Detailed Site Investigation

Refer to Figure 2

Position

Location 242-244 Young Street, Waterloo NSW

Job No. E23915 Contractor HartGeo Pty Ltd

Logged DR Date: 15/8/18 Client Bennet Murada Architects Drill Rig Ute-mounted Solid Flight Auger Date: 21/8/18

Checked CS Inclination

		Dril	ling		Sampling				Field Material Desc	rinti	on	
	N N		iiig		Jamping			30L	i leid material besc			PIEZOMETER DETAILS ID Static Water Level
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	BH1M ≥
Б			0 —	0.12	BH1M_0.3-0.4 ES QD1 QT1 PID = 1.9 ppm		<i>р</i> . В	_	CONCRETE: 120mm thick.	-		Gatic Cover Concrete
			-				\otimes		FILL: Gravelly Clayey SAND; medium grained, light brown/orange/grey, with low to medium plasticity clay and fine, sub-angular to angular gravels, weak hydrocarbon odour.			Cuttings
			-	0.80	BH1M_0.5-0.6 ES PID = 5.6 ppm		\otimes		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			50 mm uDV
			1-					S	SAND; fine grained, light grey, no odour.			── 50 mm uPVC Casing ■ Bentonite
			-		BH1M_1.2-1.3 ES PID = 0.3 ppm					М		
			-		PID = 0.3 ppm							
			-									
			2—	2.20								
			-		BH1M 24-25 FS				From 2.2m, brown.			
AD/	-		-		BH1M_2.4-2.5 ES PID = 0.7 ppm					M -	-	
			3-	3.00					 	W		
			-						From 3.0m, dark brown, strong hydrocarbon odour.			Sand
		\triangleright	-		BH1M_3.4-3.5 ES PID = 23.1 ppm							50 mm uPVC
			-									October 1
			4 —							,,,		
			-							W		
			-									
			5	5.00								
			-						Hole Terminated at 5.00 m Target Depth Reached. Borehole Converted into Monitoring Well.			
			-									
			-									
			6—									
			-									
			-									
			7-									
			-									
			-									
			-									
			8—									
			-									
			=									
			9 —									
			-									
			-									
			-									
			10 —									
					i nis borehol	e lo	g shou	id be	e read in conjunction with EI Australia's accompanying sta	ndar	a note	es.
_									737			

Date Completed 15/8/18

1 OF 1

15/8/18

Date: 15/8/18

Sheet

Date Started

Logged DR

Project Detailed Site Investigation

Refer to Figure 2

Position

Location 242-244 Young Street, Waterloo NSW

Job No. E23915 Contractor N/A Client Bennet Murada Architects Drill Rig Hand Auger

Checked CS Date: 21/8/18 Inclination -90°

_		-	lling		Sampling	_			Field Material Descr			I
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
_			0.0				4 7 4 A A	-	CONCRETE: 100mm thick.	-		CONCRETE HARDSTAND
		JE.	-	0.10	BH2_0.1-0.2 ES PID = 2.2 ppm			-	FILL: SAND: fine to medium grained, dark brown, with organics, slight hydrocarbon odour.			FILL
à	-	GWNE	_				· · · · · · · · · · · · · · · · · · ·	-	SANDSTONE; fine grained, yellow, with coarse, sub-angular to angular sandstone fragments, no odour.	М	-	BEDROCK
				0.40	BH2_0.3-0.4 ES PID = 1.4 ppm							
									Hole Terminated at 0.40 m Refusal on Sandstone Bedrock. Backfilled with Drilling Spoil.			
			0.5 —									
			_									
			-									
			_									
			-									
			1.0 —									
			-									
			=									
			-									
			_									
			1.5 —									
			_									
			-									
			_									
			_									
			2.0 —									
			2.0		This boreho	le lo	g shou	ıld be	e read in conjunction with EI Australia's accompanying star	ndar	d note	es.

Date Completed 15/8/18

1 OF 1

15/8/18

Sheet

Date Started

Project Detailed Site Investigation

Location 242-244 Young Street, Waterloo NSW

Position Refer to Figure 2 Job No. E23915 Contractor N/A Client Bennet Murada Architects Drill Rig

Logged DR Date: 15/8/18 Hand Auger Checked CS Date: 21/8/18 Inclination -90°

			ling		Sampling				Field Material Descr	iptio	n		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
5			0.0				7 Q Q Q	-	CONCRETE: 150mm thick.	-		CONCRETE HARDSTAND	
-	-	GWNE	-	0.15	BH3_0.2-0.3 ES PID = 2.1 ppm			-	FILL: Gravelly CLAY; low to medium grained, brown, with fine to coarse gravels, no odour.	М	-	FILL	
			-	0.35					Hole Terminated at 0.35 m				_
			=						Refusal on Second Concrete Slab. Backfilled with Drilling Spoil.				
			0.5										
			-										
			-										
			-										
			1.0 —										
			-										
			=										
			-										
			=										
			1.5 —										
			_										
			-										
			-										
			2.0 —										_
					This boreho	le lo	g shou	ıld be	e read in conjunction with EI Australia's accompanying star	ndard	d note	es.	

Date Completed 15/8/18

1 OF 1

15/8/18

Date: 15/8/18

Sheet

Date Started

Logged DR

Project Detailed Site Investigation

Location 242-244 Young Street, Waterloo NSW

Position Refer to Figure 2 Job No. E23915

Client Bennet Murada Architects Drill Rig Hand Auger

N/A

Contractor

		Dri	lling		Sampling				Inclination -90° Field Material Desc	rintic	n.	Checked CS Date: 21/8.
METHOD	PENETRATION RESISTANCE	_	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION		CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
Δ			0.0				A A A A A A A A A A A A A A A A A A A	-	CONCRETE: 150mm thick.	-		CONCRETE HARDSTAND
AD/T	-	GWNE	-	0.15	BH4_0.2-0.3 ES PID = 2.1 ppm			-	FILL: Gravelly Clayey SAND; medium grained, light brown/orange/grey, with low to medium plasticity clay and fine, sub-angular to angular gravels, with plastics and bark fragments, weak hydrocarbon odour.	M	_	FILL
			-	0.30			XX		Hole Terminated at 0.30 m Refusal on Coarse Concrete Gravels. Backfilled with Drilling Spoil.			
			0.5—									
			-									
			-									
			1.0 —									
			-									
			-									
			-									
			1.5 —									
			_									
			_									
			2.0									
					This boreho	ole lo	g shou	ıld be	e read in conjunction with EI Australia's accompanying sta	ndar	d note	es.

Date Completed 15/8/18

1 OF 1

15/8/18

Date: 15/8/18

Sheet

Date Started

Logged DR

Project Detailed Site Investigation

Refer to Figure 2

Position

Location 242-244 Young Street, Waterloo NSW

Job No. E23915 Contractor N/A Client Bennet Murada Architects Drill Rig Hand Auger

Checked CS Date: 21/8/18 Inclination -90°

	illing		Sampling	_			Field Material Descr	Field Material Description							
PENETRATION RESISTANCE WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS					
2 2	0.0					-	CONCRETE: 100mm thick.	-		CONCRETE HARDSTAND					
- GWNE	-	0.10	BH5_0.1-0.2 ES PID = 2.1 ppm			-	FILL: Gravelly SAND; fine to medium grained, brown, with fine to coarse, sub-angular to angular gravels, with slag, with sulfate and hydrocarbon odour.	М	-	FILL					
	-	0.30					Hole Terminated at 0.30 m Refusal. PVC pipe encountered and hand augering stopped due to being potential service. Backfilled with Drilling Spoil.								
	0.5														
	-														
	1.0 —														
	-														
	-														
	1.5 —														
	-														
	-														
	2.0									<u> </u>					

Date Completed 15/8/18

1 OF 1 15/8/18

Sheet

Date Started

Project Detailed Site Investigation

Location 242-244 Young Street, Waterloo NSW

Position Refer to Figure 2

Job No. E23915 Contractor N/A

Client Bennet Murada Architects Drill Rig Hand Auger Logged DR Date: 15/8/18
Inclination -90° Checked CS Date: 21/8/18

Drilling Sampling **Field Material Description** JSCS SYMBOL MOISTURE CONDITION CONSISTENCY DENSITY RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR FIELD TEST GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) DEPTH RL 0.0 CONCRETE HARDSTAND CONCRETE: 150mm thick. Ы 0.15 FILL FILL: Gravelly Clayey SAND; medium grained, light brown/brown/grey, with low to medium plasticity clay and fine, sub-angular to angular gravels, weak hydrocarbon odour. BH6_0.2-0.3 ES PID = 1.8 ppm AD/T М 0.50 -0.5 Hole Terminated at 0.50 m Refusal on Coarse Gravels. Backfilled with Drilling Spoil. 1.0 1.5 2.0

Sheet

Date Started

Project Detailed Site Investigation

Refer to Figure 2

Position

Location 242-244 Young Street, Waterloo NSW

Job No. E23915 Contractor HartGeo Pty Ltd

Client Bennet Murada Architects Drill Rig Ute-mounted Solid Flight Auger Logged DR

Inclination -90

Logged DR Date: 15/8/18
Checked CS Date: 21/8/18

Date Completed 15/8/18

1 OF 1

15/8/18

			Inclination -90°		Checked CS Date: 21/8/
Drilling	Sampling		Field Material Desc	ription	1
METHOD PENETRATION RESISTANCE WATER DEPTH (metres)	SAMPLE OR FIELD TEST	GRAPHIC LOG USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
- 1.5 — 1.5	BH7_0.3-0.4 ES PID = 4.7 ppm	DSN -	FILL: Gravelly SAND; fine grained, brown, with fine, sub-angular to angular gravels, no odour. SAND; fine grained, light grey, no odour.	No No No No No No No No	ALLUVIUM
2.0 2.00			Hole Terminated at 2.00 m Target Depth Reached. Backfilled with Drilling Spoil.		

Sheet Date Started

Project Detailed Site Investigation

Refer to Figure 2

Position

Location 242-244 Young Street, Waterloo NSW

Job No. E23915 Contractor HartGeo Pty Ltd

Client Bennet Murada Architects Drill Rig Ute-mounted Solid Flight Auger

Inclination -90

Logged DR Date: 15/8/18
Checked CS Date: 21/8/18

Date Completed 15/8/18

1 OF 1

15/8/18

		Dril	ling		Sampling	_		_	Field Material Desc	riptio	on ≻		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
ADIT		GWNE	0.0 —	0.70	BH8 0.3-0.4 ES PID = 2.1 ppm			S	FILL: Gravelly SAND; fine grained, brown, with fine, sub-angular to angular gravels, no odour. SAND; fine grained, light grey, no odour. Hole Terminated at 2.00 m	м		ALLUVIUM	

Date Started

Date Completed

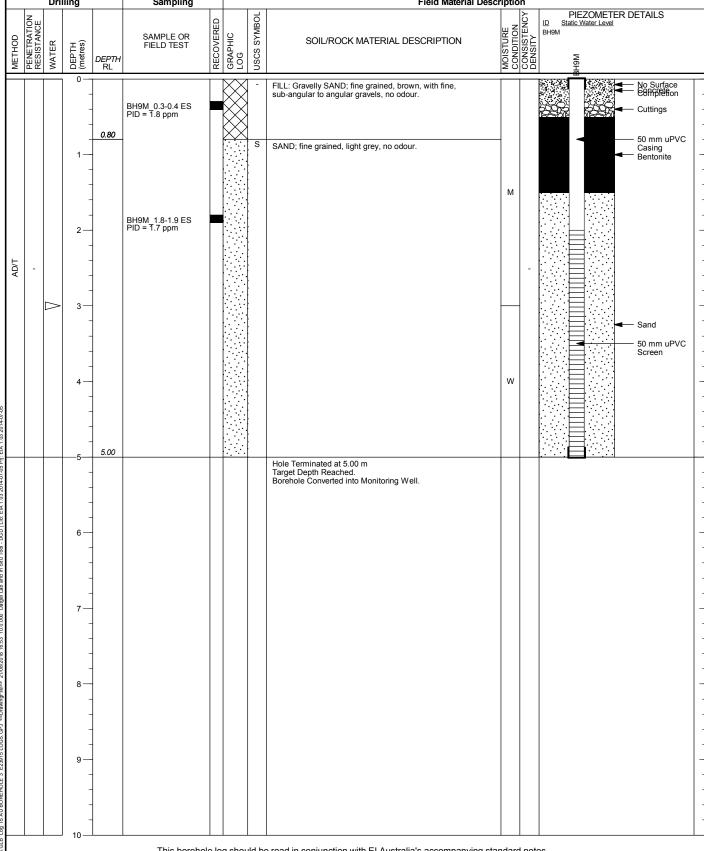
1 OF 1 15/8/18

15/8/18

Sheet

Project **Detailed Site Investigation**

Refer to Figure 2


Position

Location 242-244 Young Street, Waterloo NSW

Job No. E23915 Contractor HartGeo Pty Ltd

Date: 15/8/18 Logged DR Bennet Murada Architects Drill Rig Ute-mounted Solid Flight Auger

Client Checked CS Date: 21/8/18 Inclination -90° Drilling Sampling **Field Material Description**

BOREHOLE: BH10M

Date Started

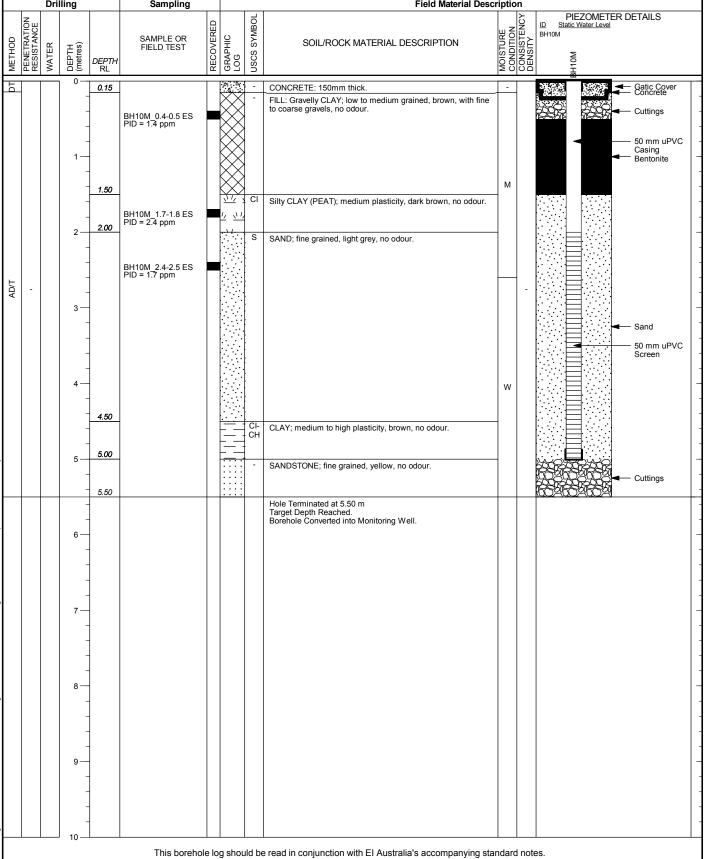
1 OF 1 15/8/18

15/8/18

Sheet

Project **Detailed Site Investigation**

Refer to Figure 2


Position

Location 242-244 Young Street, Waterloo NSW

Job No. E23915 Contractor HartGeo Pty Ltd

Date Completed Date: 15/8/18 Logged DR Bennet Murada Architects Drill Rig Ute-mounted Solid Flight Auger

Client Checked CS Date: 21/8/18 Inclination Drilling Sampling **Field Material Description**

APPENDIX F Field Data Sheets

Site Inspection Card - CLM Projects Form OP 005 (Rev 2)

EI Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

Project Number:	E239B	Engineer Name:	DRICS
Date:	3117/18	Time ON Site:	8:30
Travel Time:	l hr	Time OFF Site:	10:00
Site Address/Location: 247		Young Street, Note	
	edy Sunny	Tourney street, the	100 14344
Current Site Uses: Film	School en	igineering I many fact	turing workshop & officer
for development co	ompany	J. J.	
Surrounding Land Uses:	, ,		
North: Apartment	block		
South: Open space	\$ apartic	nest	
East: Offices Iwor	kshops one	d general retail	(hair driser & cafes)
West: Anaskanat		10.2 10 x1.70	
West: Apartments			
Current Site Condition			
Buildings Structures:			
7	pended slab	□ basement Level(s)	sub-stations service pits / sumps
_	ential lead paint	accessible soils (locations)	✓ sub-stations □ service pits / sumps
☐ Other (please decsribe):	Sittai lead pairt	accessible solis (locations)	
Soil / Vegetation (overgrown, di	stressed, bare soil pa	itches):	
Locally good (ordition / le	ocally poor condition	(due to vehicle movement)
Condition of concrete, bitumen	roading, flooring etc.:	:	^
Yes, generally	in good a	Ondition, with sligh	t cracking & Staining.
Evidence of USTs / UPSS Infras	tructure:		
No			
Evidence of Groundwater Monit	oring Wells:		
Presence of Waste / Rubbish / S	tockpiles:		
Storage by con	mpany undr	Earpark.	
Unusual Odours:			
No			
Signed: DZ		Name: DR	Date: 4 31/7/18

Site Inspection Card - CLM Projects Form OP-005 (Rev 2)

EI Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

1	pe of site, surface water, drainage, closest rece	
Numbe	of level charges through	shout the building (looding bays) than Young St.
Hunter	Street at lower alevation.	than Young St.
	/ activities: (presence of asbestos, solid or liqu	
Alumerous	engineering marchinen	(athers turners)
Anecdotal Information	on:	
- Previous	occupionts: fibre optic	caple Manufacuter (Finsar?)
		23
Notes:		
- Access	for drilling rig was also	o completed.
	, , ,	LIS CONTRACTOR OF THE CONTRACT
		A 12 12 12 12 12 12 12 12 12 12 12 12 12
		the state of the s
Signed:	Name:	Date:

Site Inspection Card - General Form OP 005b (Rev 1)

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

Project Number:	E2391S	Sheet: of Date:	15/8/13
Project Name:	Nater 100 - DSI	Time at ARRIVAL: 4:30	(am/pm
Client Contact:	N	Time at DEPARTURE: 3:31	am/pm
Site Address/Location: 24	2-244 Young St. Waterloo		p P
Climatic Conditions:	,,		
Completed Works (Describe sit	te conditions, stage of works, relevant environme	ental conditions) (Take photos	
7:30: Arrive			
9:30: Damo's	auger get stuck, started	doing hand a	igers while
normann he fixe	d the rig.		
7,000/200	and augering and & first u		
12:00: complete	d two augered holes and	second monite	oring wall.
1:15: finish fi	nal monitoring wells.		
1:45: finished	concreting holes		
2:15: finished	developing wells.		
2:30: packed	up and want going back	to office.	
Comments / Issues / Conclusio	ns / Further Testing Required / Actions to be Un	dertaken / Timing of Actions:	
	· · · · · · · · · · · · · · · · · · ·		
Name:		Signed:	

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

ABN 33 102 449 507
E service@eiaustralia.com.au
W www.eiaustralia.com.au
T 02 9516 0722

CALIBRATION CERTIFICATE FOR PHOTO IONISATION DETECTOR

Instrument: Mini RAE 3000
Serial Number: 592-906667 - El PID02 OR 592-901345 - El PID03
Instrument Conditions:
Calibration gas species: Isobutylene. Calibration gas concentration:ppm Gas bottle number:676450 - 176 This PID has been calibrated to Isobutylene gas with the span concentration displayed asppm atppm atppm span setting (allowable range +/-10ppm from span setting). The PID is initially zero calibrated in fresh air. Remaining gas in bottle:psi (if reading is <250 psi, notify Equipment Manager to arrange new gas bottle order)
The above detector was calibrated in accordance with manufacturer's specifications. Signed:

Time: <u>8:00 pm</u>

LEGEND

_ _ _ Approximate site boundary

Drawn:	D.R.
Approved:	-
Date:	04-07-18

Mr Tim Sims Detailed Site Investigation 242-244 Young Street, Waterloo NSW Proposed Sampling Location Plan

Project: E23915.E02.Rev0

Site Inspection Card - General Form OP 005b (Rev 1)

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

Project Number:	E23915.E02	Sheet: of Date: 24/08/18
Project Name:		Time at ARRIVAL:
Client Contact:		Time at DEPARTURE: 3:40 am/pm
Site Address/Location: 242	- 244 Young St, Waterloo	, NSW
Climatic Conditions: Rain		
Completed Works (Describe sit	e conditions, stage of works, relevant environme	ental conditions) (Take photos)
3 Ground	Samples (BA1M-1,	BH9M-1, BH1OM-1)
ad and at	taken a BH9M	
Comments / Issues / Conclusio	ns / Further Testing Required / Actions to be Uno	dertaken / Timing of Actions:
	·	
	26	
	*	
<i>h</i>		
Name:		Signed:

WATER SAMPLING FIELD SHEET

Site Address:	242 - 244	4 Your	ig St,	Water	loo	Job Numb	,
	idic Equit	y Part	ners'	Pty L	td		24/8/18
Field Staff:	LB '			/			Location ID BH1M
Well Location						Round No	
MEDIUM	The second secon	Groundwa	ter 🗆 S	Surface Wa	ater	□Stormw	ater Other:
SAMPLING F	POINT INFO						
Well Installati	NA 4000 NEW YORK OF THE PARTY O						down (m): -0.08 (+ above ground - below ground)
Initial Well De	epth (mBTOC):						terval (mBTOC):
Previous Sam	npling Date:					Previous 9	SWL (mBTOC):
PID READING	GS						A.
PID Headspa	ce (ppm):					PID Back	ground (ppm):
Charles and the Control of the Contr	g Space (ppm):		/				/-
PRE PURGE							
	epth (mBTOC):	4.79					d Condition: 9000
SWL (mBTO						Water Co	lumn (m): 1,5
PHASE SEPA	ARATED HYDR	OCARBON	IS (PSH)				
Depth to PSF						PSH Visua	ally Confirmed (Bailer):
PSH Thickne	ss (mm):						
PURGE AND	SAMPLE				16		
Sampling Me		☑Bladde	r [⊐Peristalti	с 🗆	Submersib	ole □Other:
Depth of Pum	np Inlet (mBTOC): 4.00				Fill Timer:	
Pump Pressu	re Regulator (p	si): 25 b	S L 60	p.si	111 00 700	Discharge	Timer:
Weather Con	ditions: Rain	ing '		1		Cycle:	
Pump on time	e: 12:21	0				Pump off	time: 12150
WATER QUA	LITY PARAME	TERS					
Probe Make a	and Model:			2		Bump Tes	st Date and Time:
Time	olume SWL (L) (mbtoc)	Temp (°C)	EC (µS/cm)	Redox (mV)	DO (mg/L)	pH (units)	Comments (colour, turbidity, odour, sheen etc.)
	,5 331	18.67	1385	167.2	1,58	7.22	brown, very h turb, yes (HC)
12:37 1	.0 3.30		860	166.6	0.34	7.21	
12:39 1	1.5 3.30		799	167.1	0,35	7.17	yea (sheen a bit)
12:41	200 3.32	18.74	783	167.3	0.31	7.16	7
						-	
1							
0/ 1/1/							
	ation range:	±0.2°C	±3%	±20mV	±10%	±0.2	
	tive readings			5000 -2000 250000000			
OTHER COM	IMENTS/OBSE	RVATIONS):				
	4						
SIGNATURE	: B						

WATER SAMPLING FIELD SHEET

				. 2				elaustralia
Site Addres	s: 242	,-244	Young	St.	Waterly	00	Job Numb	per: E23915
		Equity	Part	nuis		tol	Date: 24	4/08/18
Field Staff:	LB	1 /			1		Sampling	Location ID BH9M
Well Location		uthern	boundo	vy (co	rner)	(Fig 2)	Round No	THE CONTRACTOR OF THE CONTRACT
MEDIUM			Groundwat		Surface Wa		□Stormw	rater □Other:
SAMPLING	POINT							
Well Installa							Stick up /	down (m): - 0.08 (+ above ground - below ground)
Initial Well [Depth (m	BTOC):						terval (mBTOC):
Previous Sa								SWL (mBTOC):
PID READII		Jato.					i Tovious	OWE (IIIB100).
PID Headsp		m).		/			DID Back	ground (ppm):
PID Breathi			-				FID Back	ground (ppm).
PRE PURG		e (ppm).						
Total Well D		PTOC):	2. 0/1				Mall Hear	d Condition: 900d
			4.84					
SWL (mBT		2.60	CARRON	C (DCII)			water Co	lumn (m): 2.24
PHASE SEI			CAKBON	2 (L2H)	_/		DOLLY"	ally Confirm of (Pallon)
Depth to PS							PSH Visu	ally Confirmed (Bailer):
PSH Thickn				. /				/
PURGE AN		LE						
Sampling N			☑Bladde		□Peristalti		Submersik	978929 20 Appendix over § 200400 (1905)
Depth of Pu	mp Inlet	(mBTOC)					Fill Timer:	
Pump Press): (50 psi			Discharge	e Timer:
Weather Co	nditions	Rain	mg	1			Cycle: (PM4
Pump on tin	ne: 1	30	U				Pump off	time: 2:30
WATER QU	ALITY F	ARAMET	ERS		20			
Probe Make	and Mo	del:					Bump Tes	st Date and Time:
Time	/olume (L)	SWL (mbtoc)	Temp (°C)	EC (µS/cm)	Redox (mV)	DO (mg/L)	pH (units)	Comments (colour, turbidity, odour, sheen etc.)
1:45	0.5	2.64	17.28	702	180.2	. 1.84	6.63	brown arey h-turbidity.
1:47	1.0	2.61	17.20	671	180.4	1.37	6.63	7 9 007
1:51	1.5	2.60	17.26	606	181.5	2.32	6,62	, mo, mo -
1:59	2.0	2.61	1715	605	181.6	1.43	6.62	V
7100	20	0.01	1710	000	10170	1:70	0.000	<u> </u>
					7			<u> </u>
	-							
					-			
	-							
								The state of the s
Stabilis 3 consec	sation ra		±0.2°C	±3%	±20mV	±10%	±0.2	
OTHER CO								
ad a	nd 6	ut ta	Cen (a) BH	19M.			
		4						
SIGNATUR	E: A	3						

WATER SAMPLING FIELD SHEET

Site Addre	ess: 24	2-244	Young	2 St.	Waterle	00	Job Numb	per: E23915					
	Pacific			theis	Pty Lt	- 1	Date: 2	4/8/18					
Field Staf		7	1	0, 1000	/			Location ID BHIOM					
Well Loca		e Fig	2				Round No						
MEDIUM			Groundwa	ter 🗆 S	Surface Wa	ater	□Stormw						
SAMPLIN	IG POINT												
Well Insta	0.2500000000000000000000000000000000000	01/1000-0000-0					Stick up /	down m): - 0.10 (+ above ground - below ground)					
Initial We								terval (mBTOC):					
Previous								SWL (mBTOC):					
PID REAL													
PID Head		m):					PID Back	ground (ppm):					
PID Breat													
PRE PUR		(1-1-7											
		BTOC):	5.10				Well Head	d Condition: 9000					
SWL (mB			0 10					lumn (m): 2.46					
		D HYDRO	CARBON	IS (PSH)				(4) 30 10					
Depth to I				,			PSH Visu	ally Confirmed (Bailer):					
PSH Thic								,					
PURGE A													
Sampling			ØBladde	r [□Peristaltio	·	Submersik	ole □Other:					
		t (mBTOC)			ar oriotaiti		Fill Timer:						
		gulator (ps					Discharge						
Weather			1).				Cycle:	, Timor.					
Pump on							Pump off	time:					
			FRS				i unip on	uno.					
	TER QUALITY PARAMETERS De Make and Model: Bump Test Date and Time:												
Time	Volume (L)	SWL (mbtoc)	Temp (°C)	EC (µS/cm)	Redox (mV)	DO (mg/L)	pH (units)	Comments (colour, turbidity, odour, sheen etc.)					
2:42			19.18	THE PART OF THE PA	167.6	1.66	6,48	brown forw, h. n. n.					
2:44	1.0	2.67	19.18	254	167.9	1.47	6.49	brown/grey, h, n, n.					
2:48	1.5	2.76	19.49	228	168.3	1,35	6.48						
2:51	2.0	2.79	19.46	226	168.5	1.54	6.48	V					
20,01	2.0	2.13	13.40	0,00	100.0	1,01	0.40	,					
					7			,					
		9											
Stab	ilisation ra	inge:											
	ecutive re		±0.2°C	±3%	±20mV	±10%	±0.2						
HENDERS CONTRACTOR		S/OBSER	VATIONS):			L						
J. 11 LIK	J.IIII EIVI	J, JEGEN	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•									
) 1													
SIGNATU	IRE: M	2		,									
	ght.												

APPENDIX G Chain of Custody and Sample Receipt Forms

Sheet of	2	-			San	ample Matrix Analysis Comments																					
Site: 242 - 244 Water 100	Young S	treel,	-	Project No:			t, etc.)	AHs	\Hs					ion	hange)	anductivity)								HM A Arsenic Cadmium Chromium Copper Lead			
Laboratory:	ALEXAN	stralia 33 Maddox NDRIA NSW 94 0400 F: 0	2015	499			OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHS OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	HM [≜] /TRH/BTEX			SC	Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite	S					HMB/PAH	Mercury Nickel Zinc HM B Arsenic Cadmium			
Sample	Laboratory	Container	S	ampling	WATER	_ ا	HERS	MA /	HM A /	MAN	BTEX	VOCs	Asbestos	spest	1/CE	1/EC	ewate	SPOCAS	PFAS				TCLP	Chromium			
ID	ID	Туре	Date	Time	WA	SOIL	TO	ĬŎ	Ī	Î	В	>	Ä	A	4	1d	ŏ	S	<u>a</u>	_			T(Mercury Nickel			
BH14-0.3-0.4	1	J, ZLB	15/8/1	8 AMIPH		X		X														Dewatering Suite pH & EC					
_ 0.5-0.6	2							X			,													TDS / TDU Hardness			
-1.2-13	3	す							X						×							. /		Total Cyanide Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)			
BHIM = 2.4-25	4.	1																Cu, Pb, Hg, Ni, Zr TRH (F1, F2, F3, BTEX									
BH2_0,1-0-2	5	J, 216						X	_X							PAH Total Phenol								The state of the s			
1	6	5							X						×									LABORATORY TURNAROUND			
BH3_ 0.2-0.3	7	J. ZLB						×																X Standard			
BH4-0.2-0.3	8	1						X																24 Hours			
BHS 0.1-0.2	9				Г			x																48 Hours			
BH6 0.2-03	10					П		X																72 Hours			
	11							X																Other			
BH7. 0.3-0.4	11	т	1			1		,							-												
Container Type: J= solvent washed, aci S= solvent washed, aci	id rinsed gla	flon sealed, glas	ss jar			Investigator: I attest that these samples were collected in accordance with standard EI field sampling procedures. Report with EI Waste Classification Table																					
P= natural HDPE plast VC= glass vial, Teflon ZLB = Zip-Lock Bag						Samp		ame (El):			Rece	ived by	(SGS)	:			S-			Alover	ndria l	ahors	aton			
ZEB - ZIP-LOCK Bag							David	Riz	Kalb			N	ess	5					545	Ens /	Alexai			itory			
010				, 55 Miller St NT NSW 20		Sign		FIL				A															
Pialic	trali	2	Ph:	9516 0722			- (6181				Pate 16	181	18	1	2:	25					CC					
Cart production - Parriet	uan	u		ustralia.com.	.au																						

Sheet _2 of	_2	-				Sample Matrix Analysis Comments											Comments								
Site: 242- 244	Young	Street,		Pro	ject No:												ity)								HM A Arsenic
Waterloo				EL	3915			ıt, etc.)	AHs	AHs					tion	change)	onductiv								Cadmium Chromium Copper Lead
Laboratory:	ALEXA	stralia 33 Maddox NDRIA NSW 94 0400 F: 0	2015	0499				OTHERS (i.e. Fibro, Paint, etc.)	A /TRH/BTEX/PAHs P/OP/PCB/Asbestos	/TRH/BTEX/PAHs	HM [≜] /TRH/BTEX			SC	Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	ring Suite	S					HM B / PAH	Mercury Nickel Zinc HM B Arsenic Cadmium
Sample ID	Laboratory ID	Container Type		Samplin		WATER	SOIL	rhers	HM A /	HM A /T	IM A /I	BTEX	VOCs	Asbestos	sbest	H / CE	H/EC	Dewatering	SPOCAS	PFAS				TCLP	Chromium Lead
			Date		Time	3		.0					>	4	4	d.	а		S	ш					Mercury Nickel
BH8_0.3-0.4	12	T, ZLB	15/8/	8	AMPH	_	X		χ	×	_	-				X			Dewatering Suite pH & EC TDS / TDU						
BH8_1.7-1.8	13	J				\vdash	+			~		\vdash				^									Hardness Total Cyanide
BH9M_ 0.3-0.4	14	J, 24B		_					×			-								_		-			Metals (AI, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4)
1 - 1.8-1A	15	J				_	\vdash			X		-				X							-		BTEX PAH
BH104-0.4-0.5	16	J, 2LB				_	1		×											_					Total Phenol LABORATORY
3HOM _ 1.71.8	17	J							_	X		_				X									TURNAROUND
BH10M 24-25		1								×															X Standard
QD1	19	J									X														24 Hours
TS	20	VC										×													48 Hours
TB	21	VC					1					X													72 Hours
QR1	22	S. P. 2VC				X					×														Other
QEBL		J	V		1	1																			
Container Type: J= solvent washed, ac S= solvent washed, ac P= natural HDPE plast	id rinsed gla		ss jar				Inve	stigato				se san				ed in a	ccord	ance	F	Report	with E	I Wast	te Clas	sificati	on Table
VC= glass vial, Teflon ZLB = Zip-Lock Bag							Samp		ame (E	1):	_		Rece	ived by	(SGS)	:			Sam	pler's	Comi	ments:			
							r	avid	1 12	126	alla		1	less	9										
400		S			Miller St		Sigi	nature	ast	A			\$				-,								
oiouio	+101	_			NSW 200 6 0722	J9	Dat	e	8/1		1		Date	181	18		12:	25							
eiaus	udil	d	lab@eia	austra	alia.com.	au																			
			COC March	2018 FOR	RM v.4 - SGS		Plea	se e-r	mail la	borato	ory res	sults to	: lab	œeιa	ustra	illa.co	om.a	u	l						

CLIENT DETAILS

LABORATORY DETAILS

Contact David Rizkalla

Client EI AUSTRALIA Address SUITE 6.01

SUITE 6.01

PYRMONT NSW 2009

PTRIVIONT NOV 200

Telephone 61 2 95160722 Facsimile (Not specified)

Email david.rizkallar@eiaustralia.com.au

Project E23915 242-244 Young St Waterloo NSW

Order Number **E23915** Samples 22

Manager Huong Crawford

Laboratory SGS Alexandria Environmental

Address Unit 16, 33 Maddox St

Alexandria NSW 2015

Telephone +61 2 8594 0400

Facsimile +61 2 8594 0499

Email au.environmental.sydney@sgs.com

Samples Received Thu 16/8/2018

Report Due Thu 23/8/2018 SGS Reference **SE182724**

SUBMISSION DETAILS

This is to confirm that 22 samples were received on Thursday 16/8/2018. Results are expected to be ready by COB Thursday 23/8/2018. Please quote SGS reference SE182724 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelledYesCompSample container providerSGSSampSamples received in correct containersYesSamp

Date documentation received 16/8/2018
Samples received in good order Yes
Sample temperature upon receipt 4.1°C
Turnaround time requested Standard

Complete documentation received

Sample cooling method Ice Bricks
Sample counts by matrix 21 Soil, 1 Water

Yes

Type of documentation received COC
Samples received without headspace Yes
Sufficient sample for analysis Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

2 soil and 1 water samples on hold.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499 www.sgs.com.au

_ CLIENT DETAILS _

Client El AUSTRALIA

Project E23915 242-244 Young St Waterloo NSW

- SUMMARY OF ANALYSIS

No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	pH in soil (1:5)	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	BH1M_0.3-0.4	29	14	26	11	-	10	12	8
002	BH1M_0.5-0.6	29	14	26	11	-	10	12	8
003	BH1M_1.2-1.3	-	-	26	-	1	10	12	8
004	BH1M_3.4-3.5	-	-	26	-	-	10	12	8
005	BH2_0.1-0.2	29	14	26	11	-	10	12	8
006	BH2_0.3-0.4	-	-	26	-	1	10	12	8
007	BH3_0.2-0.3	29	14	26	11	-	10	12	8
008	BH4_0.2-0.3	29	14	26	11	-	10	12	8
009	BH5_0.1-0.2	29	14	26	11	-	10	12	8
010	BH6_0.2-0.3	29	14	26	11	-	10	12	8
011	BH7_0.3-0.4	29	14	26	11	-	10	12	8
012	BH8_0.3-0.4	29	14	26	11	-	10	12	8
013	BH8_1.7-1.8	-	-	26	-	1	10	12	8
014	BH9M_0.3-0.4	29	14	26	11	-	10	12	8
015	BH9M_1.8-1.9	-	-	26	-	1	10	12	8
016	BH10M_0.4-0.5	29	14	26	11	-	10	12	8
017	BH10M_1.7-1.8	-	-	26	-	1	10	12	8
018	BH10M_2.4-2.5	-	-	26	-	-	10	12	8
019	QD1	-	-	-	-	-	10	12	8
020	TS	-	-	-	-	-	-	12	-
021	ТВ	-	-	-	-	-	-	12	-

_ CONTINUED OVERLEAF

_ CLIENT DETAILS _

Client El AUSTRALIA

Project E23915 242-244 Young St Waterloo NSW

- SUMMARY OF ANALYSIS

No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	Fibre Identification in soil	Mercury in Soil	Moisture Content	Total Recoverable Elements in Soil/Waste
001	BH1M_0.3-0.4	-	2	1	1	7
002	BH1M_0.5-0.6	-	2	1	1	7
003	BH1M_1.2-1.3	13	-	1	1	7
004	BH1M_3.4-3.5	-	-	1	1	7
005	BH2_0.1-0.2	-	2	1	1	7
006	BH2_0.3-0.4	13	-	1	1	7
007	BH3_0.2-0.3	-	2	1	1	7
008	BH4_0.2-0.3	-	2	1	1	7
009	BH5_0.1-0.2	-	2	1	1	7
010	BH6_0.2-0.3	-	2	1	1	7
011	BH7_0.3-0.4	-	2	1	1	7
012	BH8_0.3-0.4	-	2	1	1	7
013	BH8_1.7-1.8	13	-	1	1	7
014	BH9M_0.3-0.4	-	2	1	1	7
015	BH9M_1.8-1.9	13	-	1	1	7
016	BH10M_0.4-0.5	-	2	1	1	7
017	BH10M_1.7-1.8	13	-	1	1	7
018	BH10M_2.4-2.5	-	-	1	1	7
019	QD1	-	-	1	1	7
020	TS	-	-	-	1	-

_ CONTINUED OVERLEAF

CLIENT DETAILS		
Client El AUSTRALIA	Project	E23915 242-244 Young St Waterloo NSW

-	SUMMARY	OF ANALYSIS —					
	No.	Sample ID	Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
	022	QR1	1	7	10	12	8

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a corrected.

16/08/2018 Page 4 of 4

					г —			г —																
Sheet of		-			Sam	ple N													Comments					
Site: 242-244 Wester	Young	Street.		Project No:												vity)								HM ≜ Arsenic Cadmium
Mage	(00)	Msm		E2296			t, etc.)	AHs	٩Hs					tion	change	onducti								Chromium Copper Lead
Laboratory:	12 Ash	ab Services ley Street, WOOD NS\ 910 6200					OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHS OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	нм ^А /ткн/втех			SC	os Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite	S				-	HM ^B / PAH	Mercury Nickel Ziric HM B Arsenic
Sample ID	Laboratory ID	Container Type	Sar Date	npling Time	WATER	SOIL	OTHERS	HMA 7	НМ≜Л	НМАЛ	втех	VOCs	Asbestos	Asbestos (pH / CE	pH / EC	Dewate	sPOCAS	PFAS				TCLP F	Cadmium Chromium Lead Mercury
QT1	(I)	丁	16/8/18	3 AM/PH		X				χ				_		-								Nickel Dewatering Suite pH & EC
												-		කුණි	ROLAB	E	hvirolal 12 Isweed h: (02)	Servit Ashley	ST ST			,		TDS / TDU Hardness Total Cyanide Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX PAH
						<u> </u>								 	31-1	Cha	h: (03)	910.6	00	-	_			Total Phenol LABORATORY
764		_									ļ			. <u>Jot</u>	No:	19								TURNAROUND
4							1								e Rece		10/	8 / (0 20 /	3 0	2				X Standard
														Red	eived t	y: {								24 Hours
											_			Co Se	oling: lo curity: a	e/lcép	roken/	enol						48 Hours
																								72 Hours
																								Other
Container Type: J= solvent washed, ac S= solvent washed, ac P= natural HDPE plas	old rinsed gla	flon sealed, glasses bottle	ss jar		<u> </u>	Inve	Investigator: I attest that these samples were collected in accordance with standard El field sampling procedures. Report with El Waste Classification Table																	
VC= glass vial, Teflon						Sampler's Name (El): Received by (Envirolab) 218 Sampler's Comments:																		
ZLB = Zip-Lock Bag								a Ri	7/0d	b		<i>Pni</i>	nt	Ken	i's	U	1							
10	1	S		55 Miller St			nature	AR .		<u>~ </u>		Sigr	nature			\$ \$) <i>(</i> = 1							
	, ["	_		IT NSW 20 516 0722	บษ	Dat	e 16	10/19	 3			Date	616	/8/	18	聿	r							
l elaus	trall	a		stralia.com.	.au	IME		TAN		_			/			4		1						
Sontammation (Reme	mental George		COC March 201	8 FORM v.4 - SGS		Plea	Please e-mail laboratory results to: lab@eiaustralia.com.au									om.a	au_							

.

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	El Australia
Attention	Lab Email

Sample Login Details		
Your reference	E23915, Waterloo	
Envirolab Reference	198566	
Date Sample Received	16/08/2018	
Date Instructions Received	16/08/2018	
Date Results Expected to be Reported	23/08/2018	

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	1 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	11.2
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	


Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

The '\sqrt{'} indicates the testing you have requested. **THIS IS NOT A REPORT OF THE RESULTS.**

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Sheet	of	_			San	nple N	Matrix	atrix Analysis									Comments							
Site: 242 - 24	4 700	NG ST		Project No:		İ				T	Г					İ	Π		Г					нм 🕭
Maria			E23915			ıt, etc.)	AHS	AHS					tion	change)	conductivity)					(7)			Arsenic Cadmium Chromium Copper Lead	
Laboratory:	ALEXAN	stralia 33 Maddox IDRIA NSW 94 0400 F: (/ 2015	99			OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM [≜] /TRH/BTEX/PAHs	HM A /TRH/BTEX			60	Asbestos Quantification	Cation exchange)	(electrical co	ng Suite			ALUMINIUM	L (TOTAL	JESS	1 B / PAH	Mercury Nickel Zinc HM B Arsenic
Sample	Laboratory	Container	Sa	mpling	WATER		IERS (TA TA	T ∀ /T	A TI	BTEX	VOCs	Asbestos	besto	pH / CEC	/EC	Dewatering	Dewaterin	AS	L M O	PHENOL	HARDNES	CLP HM	Cadmium Chromium
ID	ID	Туре	Date	Time		SOIL	E E	NH O	≧ E	I	BT	9	Asl	Asl	표	H	Dev	sP(PFAS	A	à	エ	TCI	Lead Mercury Nickel
BH1M-1	S, axyc, P	1	24/8/18	PM	X				×			×				×				×	×	×		Dewatering Suite
BH9M-1		2			1				1			1									1	1		pH & EC TDS / TDU Hardness
BH10M-1	V	3							1			1				1				1	1	1		Total Cyanide Metals (Al, As, Cd, Cr,
QD1-GW		La								×														Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX
	1		Y	V																				PAH Total Phenol
BHR-1	V	5	V	1	V					X														LABORATORY
BHR-1 SWQTBI	VC	G	LAB		×						×					-	 							Carried Communication
GWATSI	VC	7	PREP	RED	×						×				Ì	SGS E	HS AI	exand	iria La	iborat 	ory			Standard
									-											Ш				24 Hours
			SE183173						173 COC						48 Hours									
															B	leceiv	ed: 2	8 – Au	g – 20	18				72 Hours
																								Other
Container Type: J= solvent washed, acid rinsed,Teflon sealed, glass jar S= solvent washed, acid rinsed glass bottle					Investigator: I attest that these samples were collected in accordance with standard EI field sampling procedures.						ance	e Report with El Waste Classification Table					on Table							
P= natural HDPE plastic bottle VC= glass vial, Teflon Septum ZLB = Zip-Lock Bag					_		me (EI)	:					(SGS):				Sam	pler's	Comm	nents:				
ap even bay					CHRIS SOLDT Print Suba								PLE	ASE	cc									
Suite 6.01, 55 Miller Street,					Sign	ature	1	5	7_		Sign	ature	Bu	4_	-1		david rizkalla @ eiaustralia . com qu					com .qu		
PYRMONT NSW 2009 Ph: 9516 0722				Date	Date 28.8.18 Date 0818 @ 3.20								ور											
elaus	tralia	d	lab@eiaus	stralia.com.a	au			ANT																
COC March 2018 FORM v.4 - SGS						Plea	se e-m	nail lab	orato	ry resu	ults to:	lab@	g)eia	ustra	lia.co	m.au	u							

CLIENT DETAILS

LABORATORY DETAILS

Chris Sordy Contact

EI AUSTRALIA Client Address **SUITE 6.01**

55 MILLER STREET

PYRMONT NSW 2009

61 2 95160722

(Not specified) Facsimile

christopher.sordy@eiaustralia.com.au Email

E23915-E02 - 242-244 Young St Waterloo Project

Order Number E23915-E02 7

Samples

Telephone

Huong Crawford Manager

SGS Alexandria Environmental Laboratory

Unit 16, 33 Maddox St Address

Alexandria NSW 2015

Telephone +61 2 8594 0400

+61 2 8594 0499 Facsimile

au.environmental.sydney@sgs.com **Email**

Tue 4/9/2018

Samples Received Tue 28/8/2018

Report Due SF183173 SGS Reference

SUBMISSION DETAILS

This is to confirm that 7 samples were received on Tuesday 28/8/2018. Results are expected to be ready by COB Tuesday 4/9/2018. Please quote SGS reference SE183173 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Complete documentation received Yes Yes Ice Bricks Sample container provider SGS Sample cooling method Samples received in correct containers Yes Sample counts by matrix 7 Water 28/8/2018 Date documentation received Type of documentation received COC Samples received in good order Yes Samples received without headspace Yes Sample temperature upon receipt 7.2°C Sufficient sample for analysis Yes Turnaround time requested Standard

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourle Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

_ CLIENT DETAILS _

Client El AUSTRALIA

Project E23915-E02 - 242-244 Young St Waterloo

- SUMMARY OF ANALYSIS

No.	Sample ID	Conductivity and TDS by Calculation - Water	Metals in Water (Dissolved) by ICPOES	PAH (Polynuclear Aromatic Hydrocarbons) in Water	pH in water	Total Phenolics in Water	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
001	BH1M-1	1	1	22	1	1	10	79	8
002	BH9M-1	1	1	22	1	1	10	79	8
003	BH10M-1	1	1	22	1	1	10	79	8
004	GW-QD1	-	-	-	-	-	10	12	8
005	BHR-1	-	-	-	-	-	10	12	8
006	GWQTB1	-	-	-	-	-	-	12	-
007	GWQTS1	-	-	-	-	-	-	12	-

CONTINUED OVERLEAF

005

BHR-1

SAMPLE RECEIPT ADVICE

Client El AUSTRALIA Project E23915-E02 - 242-244 Young St Waterloo

CHIMMADV	OF ANALYSIS —		
SUMMART	OF ANALTSIS		
No.	Sample ID	Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS
001	BH1M-1	1	8
002	BH9M-1	1	8
003	BH10M-1	1	8
004	GW-QD1	1	7

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correct of the commence immediately unless the client intervenes with a correct of the client intervenes.

30/08/2018 Page 3 of 3

Sheet of	San	nple M	latrix	rix Analysis										Comments						
Site: 242-244 Young ST Project No Waterloo E23915.	:		7							*	(ab)	ctivity)								HM A Arsenic Cadmium Chromium
E02) at	P. Fig	꿏					ion	han	ndt								Copper Lead
Laboratory: Envirolab Services	1		, Paint	EX/P/	XPA	×				tificati	n exc	cal co	e e						ΑΉ	Mercury Nickel
12 Ashley Street, CHATSWOOD NSW 2067 P: 02 9910 6200			OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM A /TRH/BTEX/PAHS	HM ^A /TRH/BTEX			. sc	Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite	S					IM B / PAH	Zinc HMB Arsenic
Sample Laboratory Container Sampling	WATER		ERS	1A /	ΛΑ1	ΛΑ ₁	втех	VOCs	Asbestos	best	1/ CE	1 / EC	wate	sPOCAS	PFAS				TCLP HM	Cadmium Chromium Lead
ID ID Type Date Time	××	SOIL	<u></u> 5	£ŏ	·	Ĭ	ВТ	۸	As	As	표	Hd	De	ds	PF			ļ. —) T	Mercury Nickel
QT-1-GW / S,P,VCx2 24-8-18 PM	X					×				_		_								Dewatering Suite pH & EC
																				TDS / TDU Hardness
																				Total Cyanide Metals (AI, As, Cd, Cr,
																				Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX
												_								PAH Total Phenol
7	-								_							F	vicolal) Servi	es	LABORATORY TURNAROUND
71														EÑV	KOLAB	Chab	12	Ashley	St 67	X Standard
						·					ļ				No:		1 1: (02) 943	\$910 6 2	90	24 Hours
	 													Dat	a Rece	ived: 2	8/8	118		48 Hours
	+	-												—Tim	e Rece	ived: ,	٠٠٠٠ کا	_		
	-{	\vdash					_							—Ten	eived (np.Coc sling: lo	l/Ambi e/ICeo	ent.	 		72 Hours
		-	-		_									- Se	unity	#act/B	oken/I	eno		Other
Container Type:		1				4.41				-111	<u> </u>							.	·	
J= solvent washed, acid rinsed, Teflon sealed, glass jar S= solvent washed, acid rinsed glass bottle		IIIVes	sugato	r: I atte with				ipies v sampli				CCOIU	ance	F	Report	with E	I Wast	te Clas	sificati -	on Table
P= natural HDPE plastic bottle VC= glass vial, Teflon Septum ZLB = Zip-Lock Bag				ame (El)					ived by	,	olab)			Sam	pler's	Comr	nents:			
ZED - Zip-Eock Dag	-	<u>"Снг</u>	lis	SOF	۲۵		Prir	" <u>᠘</u>	/				PLE	VZE	cc					
Suite 6.01, 55 Miller Street, PYRMONT NSW 2009				Signature Signature MMN					<u>-</u>	david	d. riz	kall	a @	ecaus	tralio	z . com .au				
eiaustralia Ph: 9516 0722				6-8-		-			2	?/B	118	<u> </u>	_							
Contamination Remediation Geotechnical lab@elaustralia.col		IMPORTANT: Please e-mail laboratory results to: lab@eiaustralia.com.au																		

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	El Australia
Attention	David Rizkalla

Sample Login Details		
Your reference	E23915.E02	
Envirolab Reference	199432	
Date Sample Received	28/08/2018	
Date Instructions Received	28/08/2018	
Date Results Expected to be Reported	04/09/2018	

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	1 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	10.6
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst					
Phone: 02 9910 6200	Phone: 02 9910 6200					
Fax: 02 9910 6201	Fax: 02 9910 6201					
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au					

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

The '\sqrt{'} indicates the testing you have requested. **THIS IS NOT A REPORT OF THE RESULTS.**

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

APPENDIX H Laboratory Analytical Reports

ANALYTICAL REPORT

CLIENT DETAILS -

Address

Email

LABORATORY DETAILS

Laboratory

Address

David Rizkalla Contact EI AUSTRALIA Client

> **SUITE 6.01** 55 MILLER STREET **PYRMONT NSW 2009**

Huong Crawford Manager

SGS Alexandria Environmental

Unit 16, 33 Maddox St Alexandria NSW 2015

61 2 95160722 +61 2 8594 0400 Telephone Telephone Facsimile (Not specified) Facsimile +61 2 8594 0499

> david.rizkallar@eiaustralia.com.au Email au.environmental.sydney@sgs.com

Project E23915 242-244 Young St Waterloo NSW SGS Reference SE182724 R0 E23915 Order Number Date Received 16/8/2018 22 23/8/2018 Samples Date Reported

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar Beniameen

Chemist

Bennet Lo

Senior Organic Chemist/Metals Chemist

Huong Crawford

Production Manager

Kamrul Ahsan

Senior Chemist

Ravee Sivasubramaniam

S. Ravenolm.

Hygiene Team Leader

Shane McDermott

Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke B Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f+61 2 8594 0499

www.sgs.com.au

VOC's in Soil [AN433] Tested: 22/8/2018

			BH1M_0.3-0.4	BH1M_0.5-0.6	BH1M_1.2-1.3	BH1M_3.4-3.5	BH2_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 15/8/2018	- 15/8/2018	- 15/8/2018	- 15/8/2018	- 15/8/2018
PARAMETER	UOM	LOR	SE182724.001	SE182724.002	SE182724.003	SE182724.004	SE182724.005
Benzene	mg/kg	0.1	<0.1	0.4	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	1.8	<0.1	0.2	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	0.4	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	2.7	<0.2	0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	0.5	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	3.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	5.8	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	0.3	2.0	<0.1	<0.1	<0.1

			BH2_0.3-0.4	BH3_0.2-0.3	BH4_0.2-0.3	BH5_0.1-0.2	BH6_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 15/8/2018	- 15/8/2018	- 15/8/2018	- 15/8/2018	- 15/8/2018
PARAMETER	UOM	LOR	SE182724.006	SE182724.007	SE182724.008	SE182724.009	SE182724.010
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH7_0.3-0.4	BH8_0.3-0.4	BH8_1.7-1.8	BH9M_0.3-0.4	BH9M_1.8-1.9
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	15/8/2018 SE182724.011	15/8/2018	15/8/2018	15/8/2018	15/8/2018
				SE182724.012	SE182724.013	SE182724.014	SE182724.015
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH10M_0.4-0.5	BH10M_1.7-1.8	BH10M_2.4-2.5	QD1	TS
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.016	SE182724.017	SE182724.018	SE182724.019	SE182724.020
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[86%]
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[88%]
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[80%]
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	[80%]
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[86%]
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	-
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	-
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-

VOC's in Soil [AN433] Tested: 22/8/2018 (continued)

			ТВ
			SOIL
			-
PARAMETER	UOM	LOR	15/8/2018 SE182724.021
Benzene	mg/kg	0.1	<0.1
Toluene	mg/kg	0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2
o-xylene	mg/kg	0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 22/8/2018

			BH1M_0.3-0.4	BH1M_0.5-0.6	BH1M_1.2-1.3	BH1M_3.4-3.5	BH2_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.001	SE182724.002	SE182724.003	SE182724.004	SE182724.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	0.4	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH2_0.3-0.4	BH3_0.2-0.3	BH4_0.2-0.3	BH5_0.1-0.2	BH6_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
					-	-	-
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.006	SE182724.007	SE182724.008	SE182724.009	SE182724.010
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH7_0.3-0.4	BH8_0.3-0.4	BH8_1.7-1.8	BH9M_0.3-0.4	BH9M_1.8-1.9
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.011	SE182724.012	SE182724.013	SE182724.014	SE182724.015
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH10M_0.4-0.5	BH10M_1.7-1.8	BH10M_2.4-2.5	QD1
			SOIL	SOIL	SOIL	SOIL
PARAMETER.	11014	1.00	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER TRH C6-C9	UOM	LOR 20	SE182724.016 <20	SE182724.017 <20	SE182724.018 <20	SE182724.019 <20
	mg/kg		-		-	
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25

23/08/2018 Page 4 of 27

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 22/8/2018

				1	1		
			BH1M_0.3-0.4	BH1M_0.5-0.6	BH1M_1.2-1.3	BH1M_3.4-3.5	BH2_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.001	SE182724.002	SE182724.003	SE182724.004	SE182724.005
TRH C10-C14	mg/kg	20	100	32	<20	<20	<20
TRH C15-C28	mg/kg	45	1100	270	<45	<45	88
TRH C29-C36	mg/kg	45	190	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	180	50	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	180	48	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	1300	300	<90	<90	110
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	1400	310	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	1400	350	<210	<210	<210

			BH2_0.3-0.4	BH3_0.2-0.3	BH4_0.2-0.3	BH5_0.1-0.2	BH6_0.2-0.3
			SOIL	SOIL	0011	001	001
			SOIL -	SOIL -	SOIL -	SOIL -	SOIL
			15/8/2018	15/8/2018	- 15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.006	SE182724.007	SE182724.008	SE182724.009	SE182724.010
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	86	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	110	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH7_0.3-0.4	BH8_0.3-0.4	BH8_1.7-1.8	BH9M_0.3-0.4	BH9M_1.8-1.9
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 15/8/2018	- 15/8/2018	- 15/8/2018	- 15/8/2018	- 15/8/2018
PARAMETER	UOM	LOR	SE182724.011	SE182724.012	SE182724.013	SE182724.014	SE182724.015
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	110	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	160	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 22/8/2018 (continued)

			BH10M_0.4-0.5	BH10M_1.7-1.8	BH10M_2.4-2.5	QD1
			SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.016	SE182724.017	SE182724.018	SE182724.019
TRH C10-C14	mg/kg	20	<20	<20	<20	25
TRH C15-C28	mg/kg	45	<45	<45	<45	200
TRH C29-C36	mg/kg	45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	42
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	42
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	210
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	220
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	250

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 22/8/2018

			BH1M 0.3-0.4	BH1M 0.5-0.6	BH1M 1.2-1.3	BH1M 3.4-3.5	BH2_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 15/8/2018	- 15/8/2018	- 15/8/2018	- 15/8/2018	- 15/8/2018
PARAMETER	UOM	LOR	SE182724.001	SE182724.002	SE182724.003	SE182724.004	SE182724.005
Naphthalene	mg/kg	0.1	8.9	4.0	<0.1	0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	6.7	2.4	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	5.6	2.0	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	5.8	1.6	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	1.4	0.5	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	9.2	4.2	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	20	16	<0.1	<0.1	0.1
Anthracene	mg/kg	0.1	7.3	3.2	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	24	9.7	<0.1	<0.1	0.2
Pyrene	mg/kg	0.1	23	9.0	<0.1	<0.1	0.2
Benzo(a)anthracene	mg/kg	0.1	11	4.0	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	10	3.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	11	2.9	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	3.9	1.3	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	10	2.9	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	4.1	1.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	0.5	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	3.7	0.9	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>14</td><td>4.0</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	14	4.0	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>14</td><td>4.0</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	14	4.0	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>14</td><td>4.0</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	14	4.0	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	170	69	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	150	65	<0.8	<0.8	<0.8

			BH2_0.3-0.4	BH3_0.2-0.3	BH4_0.2-0.3	BH5_0.1-0.2	BH6_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	15/8/2018 SE182724.006	15/8/2018 SE182724.007	15/8/2018 SE182724.008	15/8/2018 SE182724.009	15/8/2018 SE182724.010
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	0.2	0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	1.0	0.9	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	0.3	0.9	<0.1
Fluoranthene	mg/kg	0.1	0.1	<0.1	2.0	1.6	<0.1
Pyrene	mg/kg	0.1	0.1	<0.1	1.9	1.6	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	0.9	1.0	<0.1
Chrysene		0.1	<0.1	<0.1			<0.1
Benzo(b&i)fluoranthene	mg/kg	0.1	<0.1	<0.1	0.8	0.9	<0.1
. "	mg/kg				0.8	1.1	
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	0.4	0.5	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	0.7	1.0	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	0.3	0.5	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	0.3	0.5	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>1.0</td><td>1.3</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	1.0	1.3	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td>1.1</td><td>1.4</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	1.1	1.4	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>1.0</td><td>1.4</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	1.0	1.4	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	9.6	10	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	9.6	10	<0.8

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 22/8/2018 (continued)

			BH7 0.3-0.4	BH8 0.3-0.4	BH8 1.7-1.8	BH9M_0.3-0.4	BH9M 1.8-1.9
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 15/8/2018	- 15/8/2018	- 15/8/2018	- 15/8/2018	- 15/8/2018
PARAMETER	UOM	LOR	SE182724.011	SE182724.012	SE182724.013	SE182724.014	SE182724.015
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	0.2	<0.1	<0.1	0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	0.8	<0.1	<0.1	0.4	<0.1
Anthracene	mg/kg	0.1	0.3	<0.1	<0.1	0.1	<0.1
Fluoranthene	mg/kg	0.1	3.0	0.1	<0.1	1.2	<0.1
Pyrene	mg/kg	0.1	3.2	0.1	<0.1	1.2	<0.1
Benzo(a)anthracene	mg/kg	0.1	2.1	<0.1	<0.1	0.7	<0.1
Chrysene	mg/kg	0.1	1.9	<0.1	<0.1	0.6	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	2.5	<0.1	<0.1	0.6	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	1.2	<0.1	<0.1	0.3	<0.1
Benzo(a)pyrene	mg/kg	0.1	2.3	<0.1	<0.1	0.6	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	1.1	<0.1	<0.1	0.3	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	1.0	<0.1	<0.1	0.3	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>3.1</td><td><0.2</td><td><0.2</td><td>0.8</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	3.1	<0.2	<0.2	0.8	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>3.1</td><td><0.3</td><td><0.3</td><td>0.9</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	3.1	<0.3	<0.3	0.9	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>3.1</td><td><0.2</td><td><0.2</td><td>0.8</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	3.1	<0.2	<0.2	0.8	<0.2
Total PAH (18)	mg/kg	0.8	20	<0.8	<0.8	6.3	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	20	<0.8	<0.8	6.3	<0.8

			BH10M_0.4-0.5	BH10M_1.7-1.8	BH10M_2.4-2.5
			SOIL	SOIL	SOIL
			- 15/8/2018	- 15/8/2018	- 15/8/2018
PARAMETER	UOM	LOR	SE182724.016	SE182724.017	SE182724.018
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.3	<0.1	<0.1
Pyrene	mg/kg	0.1	0.4	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	0.2	<0.1	<0.1
Chrysene	mg/kg	0.1	0.2	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	0.2	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	0.2	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.3</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	0.3	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	1.7	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	1.7	<0.8	<0.8

OC Pesticides in Soil [AN420] Tested: 22/8/2018

			BH1M_0.3-0.4	BH1M_0.5-0.6	BH2_0.1-0.2	BH3_0.2-0.3	BH4_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.001	SE182724.002	SE182724.005	SE182724.007	SE182724.008 <0.1
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	0.3	0.2	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	0.9	0.6	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	1	<1	<1	<1	<1

OC Pesticides in Soil [AN420] Tested: 22/8/2018 (continued)

			BH5_0.1-0.2	BH6_0.2-0.3	BH7_0.3-0.4	BH8_0.3-0.4	BH9M_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
					-	-	-
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.009	SE182724.010	SE182724.011	SE182724.012	SE182724.014
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	0.5	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	0.4	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	5.1	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	6	<1	<1	<1	<1

OC Pesticides in Soil [AN420] Tested: 22/8/2018 (continued)

			BH10M_0.4-0.5
			SOIL
			-
			15/8/2018
PARAMETER	UOM	LOR	SE182724.016
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1
Lindane	mg/kg	0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1
Aldrin	mg/kg	0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2
Endrin	mg/kg	0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1
Isodrin	mg/kg	0.1	<0.1
Mirex	mg/kg	0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1

OP Pesticides in Soil [AN420] Tested: 22/8/2018

			BH1M_0.3-0.4	BH1M_0.5-0.6	BH2_0.1-0.2	BH3_0.2-0.3	BH4_0.2-0.3
			SOIL - 15/8/2018	SOIL - 15/8/2018	SOIL - 15/8/2018	SOIL - 15/8/2018	SOIL - 15/8/2018
PARAMETER	UOM	LOR	SE182724.001	SE182724.002	SE182724.005	SE182724.007	SE182724.008
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH5_0.1-0.2	BH6_0.2-0.3	BH7_0.3-0.4	BH8_0.3-0.4	BH9M_0.3-0.4
			SOIL -	SOIL -	SOIL -	SOIL -	SOIL -
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.009	SE182724.010	SE182724.011	SE182724.012	SE182724.014
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

PARAMETER	иом	LOR	BH10M_0.4-0.5 SOIL - 15/8/2018 SE182724.016
Dichlorvos	mg/kg	0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2
Malathion	mg/kg	0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2
Methidathion	mg/kg	0.5	<0.5
Ethion	mg/kg	0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7

PCBs in Soil [AN420] Tested: 22/8/2018

			BH1M_0.3-0.4	BH1M_0.5-0.6	BH2_0.1-0.2	BH3_0.2-0.3	BH4_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.001	SE182724.002	SE182724.005	SE182724.007	SE182724.008
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH5_0.1-0.2	BH6_0.2-0.3	BH7_0.3-0.4	BH8_0.3-0.4	BH9M_0.3-0.4
			SOIL -	SOIL -	SOIL -	SOIL -	SOIL -
PARAMETER	UOM	LOR	15/8/2018 SE182724.009	15/8/2018 SE182724.010	15/8/2018 SE182724.011	15/8/2018 SE182724.012	15/8/2018 SE182724.014
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			SOIL
PARAMETER	UOM	LOR	15/8/2018 SE182724.016
Arochlor 1016	mg/kg	0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1

23/08/2018 Page 13 of 27

SE182724 R0

pH in soil (1:5) [AN101] Tested: 22/8/2018

			BH1M_1.2-1.3	BH2_0.3-0.4	BH8_1.7-1.8	BH9M_1.8-1.9	BH10M_1.7-1.8
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.003	SE182724.006	SE182724.013	SE182724.015	SE182724.017
pH	pH Units	0.1	7.6	9.6	8.9	8.8	7.2

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 17/8/2018

			BH1M_1.2-1.3	BH2_0.3-0.4	BH8_1.7-1.8	BH9M_1.8-1.9	BH10M_1.7-1.8
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 15/8/2018	- 15/8/2018	- 15/8/2018	- 15/8/2018	- 15/8/2018
PARAMETER	UOM	LOR	SE182724.003	SE182724.006	SE182724.013	SE182724.015	SE182724.017
Exchangeable Sodium, Na	mg/kg	2	15	150	37	18	11
Exchangeable Sodium, Na	meq/100g	0.01	0.06	0.66	0.16	0.08	0.05
Exchangeable Sodium Percentage*	%	0.1	6.8	21.5	6.9	3.3	0.2
Exchangeable Potassium, K	mg/kg	2	9	64	10	11	50
Exchangeable Potassium, K	meq/100g	0.01	0.02	0.16	0.03	0.03	0.13
Exchangeable Potassium Percentage*	%	0.1	2.3	5.3	1.1	1.1	0.6
Exchangeable Calcium, Ca	mg/kg	2	160	290	410	420	4200
Exchangeable Calcium, Ca	meq/100g	0.01	0.81	1.5	2.1	2.1	21
Exchangeable Calcium Percentage*	%	0.1	84.9	47.8	87.5	87.5	93.6
Exchangeable Magnesium, Mg	mg/kg	2	7	96	13	23	150
Exchangeable Magnesium, Mg	meq/100g	0.02	0.06	0.78	0.11	0.19	1.3
Exchangeable Magnesium Percentage*	%	0.1	6.1	25.4	4.5	8.1	5.6
Cation Exchange Capacity	meq/100g	0.02	0.96	3.1	2.3	2.4	22

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 22/8/2018

			BH1M_0.3-0.4	BH1M_0.5-0.6	BH1M_1.2-1.3	BH1M_3.4-3.5	BH2_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			- SOIL	- SOIL	SOIL -	- SOIL	- 50IL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.001	SE182724.002	SE182724.003	SE182724.004	SE182724.005
Arsenic, As	mg/kg	1	15	4	2	1	3
Cadmium, Cd	mg/kg	0.3	0.5	1.0	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	34	14	0.5	2.7	15
Copper, Cu	mg/kg	0.5	50	34	1.5	2.2	16
Lead, Pb	mg/kg	1	76	84	5	10	24
Nickel, Ni	mg/kg	0.5	59	30	<0.5	0.8	12
Zinc, Zn	mg/kg	2	140	1200	87	66	70

			BH2_0.3-0.4	BH3_0.2-0.3	BH4_0.2-0.3	BH5_0.1-0.2	BH6_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 15/8/2018	- 15/8/2018	- 15/8/2018	- 15/8/2018	- 15/8/2018
PARAMETER	UOM	LOR	SE182724.006	SE182724.007	SE182724.008	SE182724.009	SE182724.010
Arsenic, As	mg/kg	1	2	3	5	3	3
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	0.7	0.3	<0.3
Chromium, Cr	mg/kg	0.3	2.7	6.5	8.9	11	2.3
Copper, Cu	mg/kg	0.5	4.2	14	50	28	6.7
Lead, Pb	mg/kg	1	9	13	180	140	19
Nickel, Ni	mg/kg	0.5	2.2	21	4.3	10	1.9
Zinc, Zn	mg/kg	2	15	56	290	110	27

			BH7_0.3-0.4	BH8_0.3-0.4	BH8_1.7-1.8	BH9M_0.3-0.4	BH9M_1.8-1.9
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.011	SE182724.012	SE182724.013	SE182724.014	SE182724.015
Arsenic, As	mg/kg	1	5	2	2	7	2
Cadmium, Cd	mg/kg	0.3	0.4	<0.3	0.3	1.0	<0.3
Chromium, Cr	mg/kg	0.3	9.3	5.5	1.9	12	2.3
Copper, Cu	mg/kg	0.5	31	16	5.0	52	2.0
Lead, Pb	mg/kg	1	73	33	61	210	19
Nickel, Ni	mg/kg	0.5	6.3	4.0	<0.5	5.8	0.6
Zinc, Zn	mg/kg	2	150	55	43	420	3.5

			BH10M_0.4-0.5	BH10M_1.7-1.8	BH10M_2.4-2.5	QD1
			SOIL	SOIL	SOIL	SOIL
			-	-	-	-
PARAMETER	UOM	LOR	15/8/2018 SE182724.016	15/8/2018 SE182724.017	15/8/2018 SE182724.018	15/8/2018 SE182724.019
Arsenic, As	mg/kg	1	9	9	2	4
Cadmium, Cd	mg/kg	0.3	2.6	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	5.0	5.2	3.5	8.5
Copper, Cu	mg/kg	0.5	7100	9.9	2.4	11
Lead, Pb	mg/kg	1	850	10	2	210
Nickel, Ni	mg/kg	0.5	12	2.1	0.7	3.4
Zinc, Zn	mg/kg	2	3800	18	2.1	54

23/08/2018 Page 16 of 27

Mercury in Soil [AN312] Tested: 22/8/2018

			BH1M_0.3-0.4	BH1M_0.5-0.6	BH1M_1.2-1.3	BH1M_3.4-3.5	BH2_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.001	SE182724.002	SE182724.003	SE182724.004	SE182724.005
Mercury	mg/kg	0.05	0.42	0.53	<0.05	<0.05	<0.05

			BH2_0.3-0.4	BH3_0.2-0.3	BH4_0.2-0.3	BH5_0.1-0.2	BH6_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.006	SE182724.007	SE182724.008	SE182724.009	SE182724.010
Mercury	mg/kg	0.05	<0.05	<0.05	0.25	0.17	<0.05

			BH7_0.3-0.4	BH8_0.3-0.4	BH8_1.7-1.8	BH9M_0.3-0.4	BH9M_1.8-1.9
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.011	SE182724.012	SE182724.013	SE182724.014	SE182724.015
Mercury	mg/kg	0.05	0.16	0.07	0.09	0.23	<0.05

			BH10M_0.4-0.5	BH10M_1.7-1.8	BH10M_2.4-2.5	QD1
			SOIL	SOIL	SOIL	SOIL
			- 15/8/2018	- 15/8/2018	- 15/8/2018	- 15/8/2018
PARAMETER	UOM	LOR	SE182724.016	SE182724.017	SE182724.018	SE182724.019
Mercury	mg/kg	0.05	0.09	<0.05	<0.05	0.11

23/08/2018 Page 17 of 27

Moisture Content [AN002] Tested: 22/8/2018

			BH1M_0.3-0.4	BH1M_0.5-0.6	BH1M_1.2-1.3	BH1M_3.4-3.5	BH2_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.001	SE182724.002	SE182724.003	SE182724.004	SE182724.005
% Moisture	%w/w	0.5	12	6.9	1.6	7.4	9.9

			BH2_0.3-0.4	BH3_0.2-0.3	BH4_0.2-0.3	BH5_0.1-0.2	BH6_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.006	SE182724.007	SE182724.008	SE182724.009	SE182724.010
% Moisture	%w/w	0.5	9.3	11	12	8.9	6.4

			BH7_0.3-0.4	BH8_0.3-0.4	BH8_1.7-1.8	BH9M_0.3-0.4	BH9M_1.8-1.9
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.011	SE182724.012	SE182724.013	SE182724.014	SE182724.015
% Moisture	%w/w	0.5	5.3	9.0	5.5	4.4	2.8

			BH10M_0.4-0.5	BH10M_1.7-1.8	BH10M_2.4-2.5	QD1	TS
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.016	SE182724.017	SE182724.018	SE182724.019	SE182724.020
% Moisture	%w/w	0.5	11	21	16	13	4.3

23/08/2018 Page 18 of 27

Fibre Identification in soil [AN602] Tested: 21/8/2018

			BH1M_0.3-0.4	BH1M_0.5-0.6	BH2_0.1-0.2	BH3_0.2-0.3	BH4_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.001	SE182724.002	SE182724.005	SE182724.007	SE182724.008
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH5_0.1-0.2	BH6_0.2-0.3	BH7_0.3-0.4	BH8_0.3-0.4	ВН9М_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			15/8/2018	15/8/2018	15/8/2018	15/8/2018	15/8/2018
PARAMETER	UOM	LOR	SE182724.009	SE182724.010	SE182724.011	SE182724.012	SE182724.014
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH10M_0.4-0.5
			SOIL
			- 15/8/2018
PARAMETER	UOM	LOR	SE182724.016
Asbestos Detected	No unit	-	No
Estimated Fibres*	%w/w	0.01	<0.01

23/08/2018 Page 19 of 27

VOCs in Water [AN433] Tested: 17/8/2018

			QR1
			WATER - 15/8/2018
PARAMETER	UOM	LOR	SE182724.022
Benzene	μg/L	0.5	<0.5
Toluene	μg/L	0.5	<0.5
Ethylbenzene	μg/L	0.5	<0.5
m/p-xylene	μg/L	1	<1
o-xylene	μg/L	0.5	<0.5
Total Xylenes	μg/L	1.5	<1.5
Total BTEX	μg/L	3	<3
Naphthalene	μg/L	0.5	<0.5

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 17/8/2018

			QR1
PARAMETER	UOM	LOR	WATER - 15/8/2018 SE182724.022
TRH C6-C9			SE182724.022 <40
TRN C6-C9	μg/L	40	~ 40
Benzene (F0)	μg/L	0.5	<0.5
TRH C6-C10	μg/L	50	<50
TRH C6-C10 minus BTEX (F1)	μg/L	50	<50

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 17/8/2018

			QR1 WATER -
PARAMETER	UOM	LOR	15/8/2018 SE182724.022
TRH C10-C14	μg/L	50	SE162724.022 <50
TRH C15-C28	μg/L	200	<200
TRH C29-C36	μg/L	200	<200
TRH C37-C40	μg/L	200	<200
TRH >C10-C16	μg/L	60	<60
TRH >C16-C34 (F3)	μg/L	500	<500
TRH >C34-C40 (F4)	μg/L	500	<500
TRH C10-C36	μg/L	450	<450
TRH C10-C40	μg/L	650	<650
TRH >C10-C16 - Naphthalene (F2)	μg/L	60	<60

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 20/8/2018

			QR1
			WATER
PARAMETER	UOM	LOR	- 15/8/2018 SE182724.022
Arsenic, As	μg/L	1	<1
Cadmium, Cd	μg/L	0.1	<0.1
Chromium, Cr	μg/L	1	<1
Copper, Cu	μg/L	1	<1
Lead, Pb	μg/L	1	<1
Nickel, Ni	μg/L	1	<1
Zinc, Zn	μg/L	5	<5

SE182724 R0

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 17/8/2018

			QR1
			WATER
			- 15/8/2018
PARAMETER	UOM	LOR	SE182724.022
Mercury	mg/L	0.0001	<0.0001

METHOD SUMMARY

SGS

METHOD -

METHODOLOGY SUMMARY -

AN002

The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.

AN020

Unpreserved water sample is filtered through a $0.45\mu m$ membrane filter and acidified with nitric acid similar to APHA3030B.

AN040/AN320

A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.

AN040

A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.

AN101

pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500.H+

AN122

Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.

AN122

The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all in meq/100g) times 100.

ESP can be used to categorise the sodicity of the soil as below:

ESP < 6% non-sodic ESP 6-15% sodic ESP >15% strongly sodic

Method is referenced to Rayment and Lyons, 2011, sections 15D3 and 15N1.-

AN311(Perth)/AN312

Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.

AN312

Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500

AN318

Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.

AN403

Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.

AN403

Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.

AN403

The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B

AN420

(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

AN420

SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

799

23/08/2018

METHOD SUMMARY

SE182724 R0

VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

AN602

Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic 'clues', which provide a reasonable degree of certainty, dispersion staining is a mandatory 'clue' for positive identification. If sufficient 'clues' are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.

AN602

Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf). The fibres detected may or may not be asbestos fibres.

AN602

AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

AN602

The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-

- (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):
- (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1q/kg; and
- (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

800

23/08/2018 Page 26 of 27

FOOTNOTES

NATA accreditation does not cover Not analysed. UOM Unit of Measure. NVL Limit of Reporting. the performance of this service. Not validated. LOR Indicative data, theoretical holding Insufficient sample for analysis. Raised/lowered Limit of IS $\uparrow \downarrow$ time exceeded INR Sample listed, but not received. Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here:

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

23/08/2018 Page 27 of 27

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 198566

Client Details	
Client	El Australia
Attention	Lab Email
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	E23915, Waterloo
Number of Samples	1 Soil
Date samples received	16/08/2018
Date completed instructions received	16/08/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	23/08/2018	
Date of Issue	21/08/2018	
NATA Accreditation Number 2901. This document shall not be reproduced except in full.		
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *		

Results Approved By

Jeremy Faircloth, Organics Supervisor Long Pham, Team Leader, Metals Steven Luong, Senior Chemist **Authorised By**

Jacinta Hurst, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		198566-1
Your Reference	UNITS	QT1
Date Sampled		16/08/2018
Type of sample		Soil
Date extracted	-	17/08/2018
Date analysed	-	20/08/2018
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	97

svTRH (C10-C40) in Soil		
Our Reference		198566-1
Your Reference	UNITS	QT1
Date Sampled		16/08/2018
Type of sample		Soil
Date extracted	-	17/08/2018
Date analysed	-	18/08/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	108

Acid Extractable metals in soil		
Our Reference		198566-1
Your Reference	UNITS	QT1
Date Sampled		16/08/2018
Type of sample		Soil
Date prepared	-	17/08/2018
Date analysed	-	17/08/2018
Arsenic	mg/kg	6
Cadmium	mg/kg	<0.4
Chromium	mg/kg	10
Copper	mg/kg	15
Lead	mg/kg	26
Mercury	mg/kg	0.1
Nickel	mg/kg	4
Zinc	mg/kg	110

Moisture		
Our Reference		198566-1
Your Reference	UNITS	QT1
Date Sampled		16/08/2018
Type of sample		Soil
Date prepared	-	17/08/2018
Date analysed	-	20/08/2018
Moisture	%	11

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil								Duplicate Spike Recovery			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]		
Date extracted	-			17/08/2018	[NT]		[NT]	[NT]	17/08/2018			
Date analysed	-			20/08/2018	[NT]		[NT]	[NT]	20/08/2018			
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	76			
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	76			
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	72			
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	73			
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	72			
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	81			
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	78			
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]			
Surrogate aaa-Trifluorotoluene	%		Org-016	99	[NT]		[NT]	[NT]	96			

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			17/08/2018	[NT]		[NT]	[NT]	17/08/2018	
Date analysed	-			18/08/2018	[NT]		[NT]	[NT]	17/08/2018	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	113	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	104	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	90	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	113	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	104	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	90	
Surrogate o-Terphenyl	%		Org-003	117	[NT]		[NT]	[NT]	113	

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate	Duplicate Spike Recovery			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date prepared	-			17/08/2018	[NT]		[NT]	[NT]	17/08/2018		
Date analysed	-			17/08/2018	[NT]		[NT]	[NT]	17/08/2018		
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	110		
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	105		
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	105		
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	107		
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	102		
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	111		
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	101		
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	104		

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
	Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than commended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC

2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

ANALYTICAL REPORT

CLIENT DETAILS -

Address

Email

LABORATORY DETAILS

Chris Sordy Contact EI AUSTRALIA Client

SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009

Huong Crawford Manager SGS Alexandria Environmental Laboratory

Unit 16. 33 Maddox St Address

Alexandria NSW 2015

Telephone 61 2 95160722 (Not specified) Facsimile

christopher.sordy@eiaustralia.com.au

+61 2 8594 0499 Facsimile au.environmental.sydney@sgs.com Email

Telephone

SGS Reference

E23915-E02 - 242-244 Young St Waterloo Project

E23915-E02 Order Number Samples

SE183173 R0

+61 2 8594 0400

Date Received 28/8/2018 4/9/2018 Date Reported

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

TRH/PAH- The Limit of Reporting (LOR) has been raised due to interferences from the sample matrix.

SIGNATORIES

Akheeqar Beniameen

Chemist

Huong Crawford

Production Manager

Kamrul Ahsan

Senior Chemist

Ly Kim Ha

Organic Section Head

kmln

Teresa Nguyen

Organic Chemist

VOCs in Water [AN433] Tested: 31/8/2018

			DUAN 4	DUOM 4	DUI40M 4	01// 0.01	DUD 4
			BH1M-1	BH9M-1	BH10M-1	GW-QD1	BHR-1
			WATER	WATER	WATER	WATER	WATER
			- 24/8/2018	- 24/8/2018	- 24/8/2018	- 24/8/2018	- 24/8/2018
PARAMETER	UOM	LOR	SE183173.001	SE183173.002	SE183173.003	SE183173.004	SE183173.005
Benzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
m/p-xylene	μg/L	1	<1	<1	<1	<1	<1
o-xylene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Xylenes	μg/L	1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Total BTEX	μg/L	3	<3	<3	<3	<3	<3
Naphthalene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane (CFC-12)	μg/L	5	<5	<5	<5	-	-
Chloromethane	μg/L	5	<5	<5	<5	-	-
Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3	<0.3	<0.3	-	-
Bromomethane	μg/L	10	<10	<10	<10	-	-
Chloroethane	μg/L	5	<5	<5	<5	-	-
Trichlorofluoromethane	μg/L	1	<1	<1	<1	-	-
Acetone (2-propanone)	μg/L	10	13	<10	<10	-	-
Iodomethane	μg/L	5	<5	<5	<5	-	-
1,1-dichloroethene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Acrylonitrile	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Dichloromethane (Methylene chloride)	μg/L	5	<5	<5	<5	-	-
Allyl chloride	μg/L	2	<2	<2	<2	-	-
Carbon disulfide	μg/L	2	<2	<2	<2	-	-
trans-1,2-dichloroethene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
MtBE (Methyl-tert-butyl ether)	μg/L	2	<2	<2	<2	-	-
1,1-dichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Vinyl acetate	μg/L	10	<10	<10	<10	-	-
MEK (2-butanone)	μg/L	10	<10	<10	<10	-	-
cis-1,2-dichloroethene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Bromochloromethane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Chloroform (THM)	μg/L	0.5	<0.5	<0.5	<0.5	-	-
2,2-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,1-trichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Carbon tetrachloride	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Dibromomethane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	<0.5	<0.5	1.8	-	-
2-nitropropane	μg/L	100	<100	<100	<100	-	-
Bromodichloromethane (THM)	μg/L	0.5	<0.5	<0.5	<0.5	-	-
MIBK (4-methyl-2-pentanone)	μg/L	5	<5	<5	<5	-	-
cis-1,3-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
trans-1,3-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,2-trichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Dibromochloromethane (THM)	μg/L	0.5	<0.5	<0.5	<0.5	-	-
2-hexanone (MBK)	μg/L	5	<5	<5	<5	-	-
1,2-dibromoethane (EDB)	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Chlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Bromoform (THM)	μg/L	0.5	<0.5	<0.5	<0.5	-	-
cis-1,4-dichloro-2-butene	μg/L	1	<1	<1	<1	-	-
Styrene (Vinyl benzene)	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,2,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,3-trichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
trans-1,4-dichloro-2-butene	μg/L	1	814	<1	<1	-	-

4/09/2018 Page 2 of 16

SGS

ANALYTICAL RESULTS

VOCs in Water [AN433] Tested: 31/8/2018 (continued)

			BH1M-1	BH9M-1	BH10M-1	GW-QD1	BHR-1
			WATER	WATER	WATER	WATER	 WATER
				-	-	-	-
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183173.001	SE183173.002	SE183173.003	SE183173.004	SE183173.005
Isopropylbenzene (Cumene)	μg/L	0.5	0.6	<0.5	<0.5	-	-
Bromobenzene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
n-propylbenzene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
2-chlorotoluene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
4-chlorotoluene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3,5-trimethylbenzene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
tert-butylbenzene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,4-trimethylbenzene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
sec-butylbenzene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3-dichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,4-dichlorobenzene	μg/L	0.3	<0.3	<0.3	<0.3	-	-
p-isopropyltoluene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
n-butylbenzene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,4-trichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Hexachlorobutadiene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,3-trichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Total VOC	μg/L	10	20	<10	<10	-	-

VOCs in Water [AN433] Tested: 31/8/2018 (continued)

			GWQTB1	GWQTS1
			WATER	WATER
				-
			24/8/2018	24/8/2018
PARAMETER	UOM	LOR 0.5	SE183173.006	SE183173.007
Benzene Toluene	μg/L μg/L	0.5	<0.5 <0.5	[96%]
		0.5	<0.5	
Ethylbenzene	μg/L	1		[93%]
m/p-xylene	μg/L	0.5	<1 <0.5	[88%]
p-xylene	μg/L			[87%]
Fotal Xylenes	μg/L	1.5	<1.5	
Fotal BTEX	μg/L	3	<3	-
Naphthalene	μg/L	0.5	<0.5	
Dichlorodifluoromethane (CFC-12)	μg/L	5	-	-
Chloromethane	μg/L	5	-	-
Vinyl chloride (Chloroethene)	μg/L	0.3	-	-
Bromomethane	μg/L	10	-	-
Chloroethane	μg/L	5	-	-
Frichlorofluoromethane	μg/L	1	-	-
Acetone (2-propanone)	μg/L	10	-	-
odomethane	μg/L	5	-	-
1,1-dichloroethene	μg/L	0.5	-	-
Acrylonitrile	μg/L	0.5	-	-
Dichloromethane (Methylene chloride)	μg/L	5	-	-
Allyl chloride	μg/L	2	-	-
Carbon disulfide	μg/L	2	-	-
rans-1,2-dichloroethene	μg/L	0.5	-	-
MtBE (Methyl-tert-butyl ether)	μg/L	2	-	-
1,1-dichloroethane	μg/L	0.5	-	-
Vinyl acetate	μg/L	10	-	-
MEK (2-butanone)	μg/L	10	-	-
cis-1,2-dichloroethene	μg/L	0.5	-	-
Bromochloromethane	μg/L	0.5	-	-
Chloroform (THM)	μg/L	0.5	-	-
2,2-dichloropropane	μg/L	0.5	-	-
1,2-dichloroethane	μg/L	0.5	-	-
1,1,1-trichloroethane	μg/L	0.5	-	-
1,1-dichloropropene	μg/L	0.5	-	-
Carbon tetrachloride	μg/L	0.5	-	-
Dibromomethane	μg/L	0.5	-	-
1,2-dichloropropane	μg/L	0.5	-	-
Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	-	_
2-nitropropane	µg/L	100	_	_
Bromodichloromethane (THM)	μg/L	0.5	<u>-</u>	-
MIBK (4-methyl-2-pentanone)	μg/L	5	-	-
cis-1,3-dichloropropene	μg/L	0.5	<u> </u>	
trans-1,3-dichloropropene	μg/L	0.5	-	-
1,1,2-trichloroethane		0.5	-	-
1,3-dichloropropane	μg/L μg/L	0.5	-	-
Dibromochloromethane (THM)		_		
2-hexanone (MBK)	μg/L	0.5	-	-
	μg/L	5		
,2-dibromoethane (EDB)	μg/L	0.5	-	-
etrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	-	-
,1,1,2-tetrachloroethane	μg/L	0.5	-	-
Chlorobenzene	μg/L	0.5	-	-
Bromoform (THM)	μg/L	0.5	-	-
cis-1,4-dichloro-2-butene	μg/L	1	-	-
Styrene (Vinyl benzene)	μg/L	0.5	-	-
1,1,2,2-tetrachloroethane	μg/L	0.5	-	-
1,2,3-trichloropropane	μg/L	0.5	-	-
rans-1,4-dichloro-2-butene	μg/L	1	816	-

4/09/2018 Page 4 of 16

VOCs in Water [AN433] Tested: 31/8/2018 (continued)

			GWQTB1	GWQTS1
			WATER	WATER
			24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183173.006	SE183173.007
Isopropylbenzene (Cumene)	μg/L	0.5	-	-
Bromobenzene	μg/L	0.5	-	-
n-propylbenzene	μg/L	0.5	-	-
2-chlorotoluene	μg/L	0.5	-	-
4-chlorotoluene	μg/L	0.5	-	-
1,3,5-trimethylbenzene	μg/L	0.5	-	-
tert-butylbenzene	μg/L	0.5	-	-
1,2,4-trimethylbenzene	μg/L	0.5	-	-
sec-butylbenzene	μg/L	0.5	-	-
1,3-dichlorobenzene	μg/L	0.5	-	-
1,4-dichlorobenzene	μg/L	0.3	-	-
p-isopropyltoluene	μg/L	0.5	-	-
1,2-dichlorobenzene	μg/L	0.5	-	-
n-butylbenzene	μg/L	0.5	-	-
1,2-dibromo-3-chloropropane	μg/L	0.5	-	-
1,2,4-trichlorobenzene	μg/L	0.5	-	-
Hexachlorobutadiene	μg/L	0.5	-	-
1,2,3-trichlorobenzene	μg/L	0.5	-	-
Total VOC	μg/L	10	-	-

SE183173 R0

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 31/8/2018

			BH1M-1	BH9M-1	BH10M-1	GW-QD1	BHR-1
			WATER	WATER	WATER	WATER	WATER
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183173.001	SE183173.002	SE183173.003	SE183173.004	SE183173.005
TRH C6-C9	μg/L	40	150	<40	<40	<40	<40
Benzene (F0)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
TRH C6-C10	μg/L	50	160	<50	<50	<50	<50
TRH C6-C10 minus BTEX (F1)	μg/L	50	160	<50	<50	<50	<50

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 30/8/2018

			BH1M-1	BH9M-1	BH10M-1	GW-QD1	BHR-1
			WATER	WATER	WATER	WATER	WATER
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183173.001	SE183173.002	SE183173.003	SE183173.004	SE183173.005
TRH C10-C14	μg/L	50	170	<50	<50	<50	<50
TRH C15-C28	μg/L	200	<400↑	<200	<200	<200	<200
TRH C29-C36	μg/L	200	<400↑	<200	<200	<200	<200
TRH C37-C40	μg/L	200	<400↑	<200	<200	<200	<200
TRH >C10-C16	μg/L	60	190	<60	<60	<60	<60
TRH >C16-C34 (F3)	μg/L	500	<1000↑	<500	<500	<500	<500
TRH >C34-C40 (F4)	μg/L	500	<1000↑	<500	<500	<500	<500
TRH C10-C36	μg/L	450	<900↑	<450	<450	<450	<450
TRH C10-C40	μg/L	650	<1300↑	<650	<650	<650	<650
TRH >C10-C16 - Naphthalene (F2)	μg/L	60	190	<60	<60	<60	<60

PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 30/8/2018

			BH1M-1	BH9M-1	BH10M-1
			WATER	WATER	WATER
			- 24/8/2018	- 24/8/2018	- 24/8/2018
PARAMETER	UOM	LOR	SE183173.001	SE183173.002	SE183173.003
Naphthalene	μg/L	0.1	<0.2↑	<0.1	<0.1
2-methylnaphthalene	μg/L	0.1	<0.2↑	<0.1	<0.1
1-methylnaphthalene	μg/L	0.1	<0.2↑	<0.1	<0.1
Acenaphthylene	μg/L	0.1	<0.2↑	<0.1	<0.1
Acenaphthene	μg/L	0.1	<0.2↑	<0.1	<0.1
Fluorene	μg/L	0.1	<0.2↑	<0.1	<0.1
Phenanthrene	μg/L	0.1	<0.2↑	<0.1	<0.1
Anthracene	μg/L	0.1	<0.2↑	<0.1	<0.1
Fluoranthene	μg/L	0.1	0.2	0.1	<0.1
Pyrene	μg/L	0.1	0.3	0.1	<0.1
Benzo(a)anthracene	μg/L	0.1	<0.2↑	<0.1	<0.1
Chrysene	μg/L	0.1	<0.2↑	<0.1	<0.1
Benzo(b&j)fluoranthene	μg/L	0.1	<0.2↑	<0.1	<0.1
Benzo(k)fluoranthene	μg/L	0.1	<0.2↑	<0.1	<0.1
Benzo(a)pyrene	μg/L	0.1	<0.2↑	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.2↑	<0.1	<0.1
Dibenzo(ah)anthracene	μg/L	0.1	<0.2↑	<0.1	<0.1
Benzo(ghi)perylene	μg/L	0.1	<0.2↑	<0.1	<0.1
Total PAH (18)	μg/L	1	2	<1	<1

SE183173 R0

pH in water [AN101] Tested: 29/8/2018

			BH1M-1	BH9M-1	BH10M-1
			WATER	WATER	WATER
					-
			24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183173.001	SE183173.002	SE183173.003
pH**	No unit	-	6.3	7.2	5.0

SE183173 R0

Conductivity and TDS by Calculation - Water [AN106] Tested: 29/8/2018

			BH1M-1	BH9M-1	BH10M-1
			WATER	WATER	WATER
					-
			24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183173.001	SE183173.002	SE183173.003
Conductivity @ 25 C	μS/cm	2	880	850	290

SE183173 R0

Total Phenolics in Water [AN289] Tested: 3/9/2018

			BH1M-1	BH9M-1	BH10M-1
			WATER	WATER	WATER
					-
			24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183173.001	SE183173.002	SE183173.003
Total Phenols	mg/L	0.05	<0.05	<0.05	<0.05

SE183173 R0

Metals in Water (Dissolved) by ICPOES [AN320] Tested: 30/8/2018

			BH1M-1	BH9M-1	BH10M-1
			WATER	WATER	WATER
			-	-	-
			24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183173.001	SE183173.002	SE183173.003
Total Hardness by Calculation	mg CaCO3/L	5	330	240	25

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 30/8/2018

			BH1M-1	BH9M-1	BH10M-1	GW-QD1	BHR-1
			WATER	WATER	WATER	WATER	 WATER
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183173.001	SE183173.002	SE183173.003	SE183173.004	SE183173.005
Arsenic, As	μg/L	1	6	3	<1	4	<1
Cadmium, Cd	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium, Cr	μg/L	1	3	<1	<1	<1	<1
Copper, Cu	μg/L	1	85	2	65	54	<1
Lead, Pb	μg/L	1	3	1	2	3	<1
Nickel, Ni	μg/L	1	3	<1	2	2	<1
Zinc, Zn	μg/L	5	110	10	92	66	<5
Aluminium, Al	μg/L	5	59	29	15	-	-

SE183173 R0

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 30/8/2018

			BH1M-1	BH9M-1	BH10M-1	GW-QD1	BHR-1
			WATER	WATER	WATER	WATER	WATER
							-
			24/8/2018	24/8/2018	24/8/2018	24/8/2018	24/8/2018
PARAMETER	UOM	LOR	SE183173.001	SE183173.002	SE183173.003	SE183173.004	SE183173.005
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

AN101

AN106

AN403

AN403

4/09/2018

METHOD SUMMARY

SE183173 R0

METHOD -METHODOLOGY SUMMARY

AN020 Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to

pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with

water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.

Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as µmhos/cm or μS/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA

2510 B.

AN106 Salinity may be calculated in terms of NaCl from the sample conductivity. This assumes all soluble salts present,

measured by the conductivity, are present as NaCl.

AN289 Analysis of Total Phenols in Soil Sediment and Water: Steam distillable phenols react with 4-aminoantipyrine at pH 7.9±0.1 in the presence of potassium ferricyanide to form a coloured antipyrine dye analysed by Discrete

Analyser. Reference APHA 5530 B/D.

AN311(Perth)/AN312 Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption

spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration

standards. Reference APHA 3112/3500.

AN318 Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.

AN320 Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy

levels. The emitted light is focused onto a diffraction grating where it is separated into components .

AN320 Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly

proportional to concentration. Corrections are required to compensate for spectral overlap between elements.

Reference APHA 3120 B.

Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four

alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). Where F2 is

corrected for Naphthalene, the VOC data for Naphthalene is used.

Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoveerable Hydrocarbons - Silica (TRH-Silica) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent

AN403 The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or

greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B,

(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments AN420 and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on

USEPA 3500C and 8270D).

AN433 VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass

827

Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed

directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES

FOOTNOTES

NATA accreditation does not cover Not analysed. UOM Unit of Measure. the performance of this service. NVL Not validated. LOR Limit of Reporting. Indicative data, theoretical holding Insufficient sample for analysis. Raised/lowered Limit of IS $\uparrow \downarrow$ time exceeded. LNR

Sample listed, but not received. Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

828

Page 16 of 16 4/09/2018

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 199432

Client Details	
Client	El Australia
Attention	David Rizkalla
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	E23915.E02
Number of Samples	1 Water
Date samples received	28/08/2018
Date completed instructions received	28/08/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	04/09/2018
Date of Issue	03/09/2018
NATA Accreditation Number 2901. T	his document shall not be reproduced except in full.
Accredited for compliance with ISO/I	EC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Jaimie Loa-Kum-Cheung, Senior Chemist Jeremy Faircloth, Organics Supervisor Steven Luong, Senior Chemist **Authorised By**

Jacinta Hurst, Laboratory Manager

vTRH(C6-C10)/BTEXN in Water		
Our Reference		199432-1
Your Reference	UNITS	QT-1-GW
Date Sampled		24/08/2018
Type of sample		Water
Date extracted	-	29/08/2018
Date analysed	-	30/08/2018
TRH C ₆ - C ₉	μg/L	<10
TRH C ₆ - C ₁₀	μg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10
Benzene	μg/L	<1
Toluene	μg/L	<1
Ethylbenzene	μg/L	<1
m+p-xylene	μg/L	<2
o-xylene	μg/L	<1
Naphthalene	μg/L	<1
Surrogate Dibromofluoromethane	%	100
Surrogate toluene-d8	%	98
Surrogate 4-BFB	%	97

Envirolab Reference: 199432

svTRH (C10-C40) in Water		
Our Reference		199432-1
Your Reference	UNITS	QT-1-GW
Date Sampled		24/08/2018
Type of sample		Water
Date extracted	-	02/09/2018
Date analysed	-	03/09/2018
TRH C ₁₀ - C ₁₄	μg/L	<50
TRH C ₁₅ - C ₂₈	μg/L	<100
TRH C ₂₉ - C ₃₆	μg/L	<100
TRH >C ₁₀ - C ₁₆	μg/L	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100
Surrogate o-Terphenyl	%	70

Envirolab Reference: 199432

HM in water - dissolved		
Our Reference		199432-1
Your Reference	UNITS	QT-1-GW
Date Sampled		24/08/2018
Type of sample		Water
Date prepared	-	29/08/2018
Date analysed	-	29/08/2018
Arsenic-Dissolved	μg/L	3
Cadmium-Dissolved	μg/L	<0.1
Chromium-Dissolved	μg/L	<1
Copper-Dissolved	μg/L	4
Lead-Dissolved	μg/L	<1
Mercury-Dissolved	μg/L	<0.05
Nickel-Dissolved	μg/L	<1
Zinc-Dissolved	μg/L	5

Envirolab Reference: 199432

Method ID	Methodology Summary
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

Envirolab Reference: 199432 Page | 5 of 10

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Water					Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]	
Date extracted	-			29/08/2018	[NT]		[NT]	[NT]	29/08/2018		
Date analysed	-			30/08/2018	[NT]		[NT]	[NT]	30/08/2018		
TRH C ₆ - C ₉	μg/L	10	Org-016	<10	[NT]		[NT]	[NT]	123		
TRH C ₆ - C ₁₀	μg/L	10	Org-016	<10	[NT]		[NT]	[NT]	123		
Benzene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	125		
Toluene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	128		
Ethylbenzene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	120		
m+p-xylene	μg/L	2	Org-016	<2	[NT]		[NT]	[NT]	122		
o-xylene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	120		
Naphthalene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
Surrogate Dibromofluoromethane	%		Org-016	105	[NT]		[NT]	[NT]	107		
Surrogate toluene-d8	%		Org-016	96	[NT]		[NT]	[NT]	99		
Surrogate 4-BFB	%		Org-016	95	[NT]		[NT]	[NT]	96		

Envirolab Reference: 199432

QUALITY CONTROL: svTRH (C10-C40) in Water						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			02/09/2018	[NT]		[NT]	[NT]	02/09/2018	
Date analysed	-			03/09/2018	[NT]		[NT]	[NT]	03/09/2018	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-003	<50	[NT]		[NT]	[NT]	113	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-003	<100	[NT]		[NT]	[NT]	100	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-003	<100	[NT]		[NT]	[NT]	118	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-003	<50	[NT]		[NT]	[NT]	113	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-003	<100	[NT]		[NT]	[NT]	100	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-003	<100	[NT]		[NT]	[NT]	118	
Surrogate o-Terphenyl	%		Org-003	81	[NT]		[NT]	[NT]	96	

Envirolab Reference: 199432

QUALITY CO	Duplicate Spike Recov					covery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			29/08/2018	[NT]		[NT]	[NT]	29/08/2018	
Date analysed	-			29/08/2018	[NT]		[NT]	[NT]	29/08/2018	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	96	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	96	
Chromium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	90	
Copper-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98	
Lead-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	96	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	107	
Nickel-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	93	
Zinc-Dissolved	μg/L	1	Metals-022	<1	[NT]	[NT]	[NT]	[NT]	94	[NT]

Envirolab Reference: 199432

Page | 8 of 10 Revision No: R00

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 199432
Revision No: R00

Page | 10 of 10

APPENDIX I QA/QC Assessment

11 QUALITY CONTROL PROGRAM

I1.1 Introduction

For the purpose of assessing the quality of data presented in this Contaminant Delineation Report, El collected field QC samples for analysis. The primary laboratory, SGS Australia Pty Ltd (SGS) and secondary laboratory, Envirolab Services Pty Ltd (Envirolab) also prepared and analysed internal QC samples. Details of the field and laboratory QC samples, with the allowable data acceptance ranges are presented in **Table I-1**.

Table I-1 Sampling Data Quality Indicators

QA/QC Measures	Data Quality Indicators
Precision – A quantitative measure of the variability (or reproducibility) of data	Data precision would be assessed by reviewing the performance of blind field duplicate sample sets, through calculation of relative percentage differences (RPD). Data precision would be deemed acceptable if RPDs are found to be less than 30%. RPDs that exceed this range may be considered acceptable where:
	Results are less than 10 times the limits of reporting (LOR);
	Results are less than 20 times the LOR and the RPD is less than 50%; or
	Heterogeneous materials or volatile compounds are encountered.
Accuracy – A quantitative measure of the closeness of	Data accuracy would be assessed through the analysis of:
reported data to the "true" value	Method blanks, which are analysed for the analytes targeted in the primary samples;
	Matrix spike and matrix spike duplicate sample sets;
	Laboratory control samples; and
	Calibration of instruments against known standards.
Representativeness – The confidence (expressed	To ensure the data produced by the laboratory is representative of conditions encountered in the field, the laboratory would carry out the following:
qualitatively) that data are representative of each medium present onsite	Blank samples will be run in parallel with field samples to confirm there are no unacceptable instances of laboratory artefacts;
	Review of relative percentage differences (RPD) values for field and laborator duplicates to provide an indication that the samples are generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities; and
	The appropriateness of collection methodologies, handling, storage and preservation techniques will be assessed to ensure/confirm there was minima opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods).

Data Quality Indicators					
Analytical data sets acquired during the assessment will be evaluated as complete, upon confirmation that:					
Standard operating procedures (SOPs) for sampling protocols were adhered to; and					
Copies of all COC documentation are presented, reviewed and found to be properly completed.					
It can therefore be considered whether the proportion of "useable data" generated in the data collection activities is sufficient for the purposes of the land use assessment.					
Given that a reported data set can comprise several data sets from separate sampling episodes, issues of comparability between data sets are reduced through adherence to SOPs and regulator-endorsed or published guidelines and standards on each data gathering activity.					
In addition the data will be collected by experienced samplers and NATA- accredited laboratory methodologies will be employed in all laboratory testing programs.					

11.2 CALCULATION OF RELATIVE PERCENTAGE DIFFERENCE (RPD)

The RPD values were calculated using the following equation:

$$RPD = \frac{|C_O - C_R|}{[(C_O + C_R)/2]} \times 100$$

Where:

Co = Concentration obtained for the primary sample; and

 C_R = Concentration obtained for the blind replicate or split duplicate sample.

12 FIELD QA/QC DATA EVALUATION

The field quality assurance/quality control (QA/QC) soil and groundwater samples collected during the investigations were as follows:

- · Blind field duplicates;
- Inter-laboratory duplicates;
- Trip blanks;
- · Trip spikes; and
- Rinsate blanks.

Analytical results for tested soil and groundwater QA/QC samples, including calculated RPD values between primary and duplicate samples, are presented in **Table I-2** and **Table I-3**, respectively.

12.1 Soil Investigation & Soil Validation

I2.1.1 Blind Field Duplicates

One blind field duplicate (BFD) soil sample were collected in total, as follows:

Sample QD1 was collected from the primary sample BH1M_0.3-0.4 on 15 August 2018.

The preparation of the BFD samples involved the collection of a bulk quantity of soil from the same sampling point without mixing, before dividing the material into identical sampling vessels. The duplicate sample was then presented blind to the primary laboratory (SGS) to avoid any potential analytical bias. BFD soil sample was analysed for TRHs, BTEX, and selected heavy metals. Calculated RPD values were found to be within the Data Acceptance Criteria, with the exception of F2 (124.32%), F3 (144.37%), arsenic (115.79%), chromium (120.00%), copper (127.87%), lead (93.71%), mercury (116.98%), nickel (178.21%) and zinc (88.66%). These exceedances are not considered to be significant due to the heterogeneity of the fill. Duplicate samples for lead was identified to be higher than the primary sample, however, did not exceeded identified soil investigation criteria.

I2.1.2 Inter-Laboratory Duplicate

Sample QT1 was collected as an inter-laboratory duplicate (ILD) of the primary sample BH1M_0.3-0.4 on 7 May 2018. The preparation of the ILD sample was identical to the BFD sample, as described above, and was analysed for TRHs, BTEX, and selected heavy metals. The calculated RPD values were found to be within the Data Acceptance Criteria, with the exception of F2 (113.04%), F3 (171.43%), arsenic (85.71%), chromium (109.09%), copper (107.69%), lead (98.04%), mercury (123.08%) and nickel (174.60%). These exceedances are not considered to be significant due to the heterogeneity of the fill.

I2.1.3 Trip Blank

One trip blank (TB1) sample was prepared and analysed by the primary laboratory for BTEX. Analytical results for this sample were below the laboratory LOR, indicating that ideal sample transport and handling conditions were achieved.

12.1.4 Trip Spike

One trip spike (TS1) sample was submitted to the primary laboratory for BTEX analysis, the results for which were reported within the RPD acceptance levels for trip spike recovery. It was therefore concluded that satisfactory sample transport and handling conditions were achieved.

12.1.5 Rinsate Blank

One rinsate blank sample QR1 was submitted to the primary laboratory for TRHs, BTEX, and selected heavy metals analysis, the results for which were reported below laboratory LOR; therefore, it was concluded that decontamination procedures performed during the field works had been effective.

12.2 GROUNDWATER INVESTIGATION

I2.2.1 Blind Field Duplicates

One groundwater BFD sample was collected, as follows:

GW-QD1 was collected from the primary sample BH1M during fieldwork on 24 August 2018.

The preparation of BFD samples involved the decanting of the groundwater collected from the respective monitoring well into two separate groups of appropriately labelled sampling containers. Volumes were split equally between the groups of sampling bottles such that the sample contained in each individual bottle, contained a similar proportion of each water volume. Sample mixing did not occur prior to decanting, in order to preserve the concentrations of volatiles potentially present within the sample. The duplicate sample was then presented blind to the primary laboratory (SGS) to avoid any potential analytical bias. The BFDs were analysed for TRHs, BTEX, and selected heavy metals.

The RPD values calculated for all the analytes tested were found to be within the Data Acceptance Criteria (DAC), with the exception of copper (185.71%), lead (100.00%), mercury (66.67%) and zinc (147.37%). These exceedances are not considered to be significant due variation that occurs in heavy metal concentrations in urban areas.

I2.2.2 Inter-Laboratory Duplicate

One ILD sample was collected in total, as follows:

GW-QT1 was collected from the primary sample BH1M during fieldwork on 24 August 2018.

The preparation of a groundwater ILD sample was identical to the BFD sample as described above and also analysed for TRHs, BTEX, and selected heavy metals. The RPD values calculated for the ILD samples were found to be within the Data Acceptance Criteria, with the exception of copper (66.67%) and zinc (66.67%). These exceedances are not considered to be significant due to the marginal RPD exceedances and the concentration for copper and zinc duplicates were less than ten times the laboratory detection limit.

I2.2.3 Trip Blanks

One trip blank sample (GWTB1), prepared by the primary laboratory, was analysed for BTEX by the primary laboratory during groundwater testing. TB results were reported below the laboratory LOR, indicating that ideal sample transport and handling conditions were achieved.

12.2.4 Trip Spikes

One TS sample (GWTS1) was submitted to the primary laboratory for BTEX analysis, the results for which were all reported within the RPD acceptance levels for trip spike recovery. It was therefore concluded that satisfactory sample transport and handling conditions were achieved.

I2.2.5 Rinsate Blanks

One rinsate blank sample (BHR-1) were submitted to the primary laboratory for TRHs, BTEX and selected heavy metals analyses. Analytical results were reported below the laboratory LOR for all analytes. In view of this finding it was concluded that decontamination procedures performed during the field works had been effective.

12.4 ASSESSMENT OF FIELD QA/QC DATA

All samples were classified in the field with respect to soil/fill characteristics and any observable signs of contamination based on visual and odour assessment, in regards to soil and groundwater.

Detailed Site Investigation 242-244 Young Street, Waterloo NSW Report No. E23915.E02_Rev0

All samples, including field QC samples, were transported to the primary and secondary laboratories under strict Chain-of-Custody conditions and appropriate copies of relevant documentation were included in the respective reports.

The overall completeness of documentation produced under the field program of the subject assessment was considered to be adequate for the purposes of drawing valid conclusions regarding the environmental condition of the site.

Based on the results of the field QA/QC data EI considered the field QA/QC programme carried out during the investigations to be appropriate and the results to be acceptable.

844

Table H-2 RPD QC for soil

Tubic II-2	Table H-2 RPD QC 101 S011																
			TF	RH			ВТ	EX					Heav	y Metals	6		
Sample identification	Description	F1*	F2**	F3 (>C ₁₆ - C ₃₄)	F4 (>C ₃₄ - C ₄₀)	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
Intra-laboratory Dup	licates - Soil Validation																
BH1M_0.3-0.4	Fill	<25	180	1300	<120	<0.1	<0.1	<0.1	<0.3	15	0.5	34	50.0	76.0	0.42	59	140
QD1	BFD of BH1M_0.3-0.4	<25	42	210	<120	<0.1	<0.1	<0.1	<0.3	4	<0.3	8.5	11.0	210	0.11	3.4	54
	RPD	0.00	124.32	144.37	0.00	0.00	0.00	0.00	0.00	115.79	50.00	120.00	127.87	93.71	116.98	178.21	88.66
Inter-laboratory Dup	licate - Soil Validation																
BH1M_0.3-0.4	Fill	<25	180	1300	<120	<0.1	<0.1	<0.1	< 0.3	15	0.5	34	50	76	0.42	59	140
QT1	ILD of BH1M_0.3-0.4	<25	<50	<100	<100	<0.2	<0.5	<1	<3	6	<0.4	10	15	26	0.1	4	110
	RPD	0.00	113.04	171.43	NA	NA	NA	NA	NA	85.71	22.22	109.09	107.69	98.04	123.08	174.60	24.00
Trip Blank/Trip Spik	e																
TB1	Sand	-	-	-	-	<0.1	<0.1	<0.1	< 0.3	-	-	-	-	-	-	-	-
TS1	Sand	-	1	-	-	[86%]	[88%]	[80%]	[80%]	-	-	-	-	-	-	-	-
Rinsate/Rinsate Blan	nks																
QR1	De-ionised water	<50	<60	<500	<500	< 0.5	<0.5	< 0.5	<1.5	<1	<0.1	<1	<1	<1	<0.1	<1	<5

NOTE: All results are reported in mg/kg (soil) or µg/L (water)

0.00RPD calculated by halving detection limit exceeds 30-50% range referenced from AS4482.1 (2005)RPD exceeds 30-50% range referenced from AS4482.1 (2005)

Table H-3 RPD QC for groundwater

TRH	Table 11-3	Kr D QC for grou	mawatt															
State Stat				TR	Н			ВТ	EX					Hea	avy Meta	ls		
GW-QD1 SFD of BH9M-1 C50 C60 C500 Sample identification	Description	F1*	F2**	3 (>C ₁₆ -	4 (>C ₃₄ -	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc	
GW-QD1 BFD of BH9M-1	Intra-laboratory	Duplicate - Groundwater In	vestigation	l														
RPD 0.00 0	GW-QD1		<50	<60	<500	<500	< 0.5	<0.5	< 0.5	<1.5	3	<0.1	<1	2	1	<1	<0.1	10
Section Computer Computation Computa	GW-QD1	BFD of BH9M-1	<50	<60	<500	<500	<0.5	< 0.5	< 0.5	<1.5	4	<0.1	<1	54	3	2	<0.1	66
GW-QD1		RPD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	28.57	0.00	0.00	185.71	100.00	66.67	0.00	147.37
GW-QD1 ILD of BH9M-1 <10 <50 <100 <100 <1 <1 <1 <3 3 <0.1 <1 4 <1 <0.05 <1 5	Inter-laboratory	Duplicate - Groundwater In	vestigation															
RPD NA	GW-QD1		<50	<60	<500	<500	< 0.5	< 0.5	< 0.5	<1.5	3	<0.1	<1	2	1	<1	<0.1	10
Trip Blank/Trip Spike GWTB1 De-ionised water NS NS NS NS <t< td=""><td>GW-QD1</td><td>ILD of BH9M-1</td><td><10</td><td><50</td><td><100</td><td><100</td><td><1</td><td><1</td><td><1</td><td><3</td><td>3</td><td><0.1</td><td><1</td><td>4</td><td><1</td><td>< 0.05</td><td><1</td><td>5</td></t<>	GW-QD1	ILD of BH9M-1	<10	<50	<100	<100	<1	<1	<1	<3	3	<0.1	<1	4	<1	< 0.05	<1	5
GWTB1 De-ionised water NS NS NS NS S S S S S S S S S S S S S		RPD	NA	NA	NA	NA	NA	NA	NA	NA	0.00	0.00	0.00	66.67	0.00	NA	NA	66.67
GWTS1 De-ionised water NS NS NS NS [96%] [96%] [93%] [88%] NS NS NS NS NS NS NS NS NS NS NS NS NS	Trip Blank/Trip	Spike																
Rinsate/Rinsate Blanks	GWTB1	De-ionised water	NS	NS	NS	NS	<0.5	<0.5	<0.5	<1.5	NS	NS	NS	NS	NS	NS	NS	NS
	GWTS1	De-ionised water	NS	NS	NS	NS	[96%]	[96%]	[93%]	[88%]	NS	NS	NS	NS	NS	NS	NS	NS
BHR-1 De-ionised water <50 <60 <500 <500 <0.5 <0.5 <0.5 <1.5 <1 <0.1 <1 <1 <1 <0.1 <1 <0.5	Rinsate/Rinsate	Blanks																
	BHR-1	De-ionised water	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	<1	<1	<1	<0.1	<1	<5

NOTE: All results are reported in mg/kg (soil) or µg/L (water)

RPD calculated by halving detection limit exceeds 30-50% range referenced from AS4482.1 (2005)
RPD exceeds 30-50% range referenced from AS4482.1 (2005)

I3 LABORATORY QA/QC

I3.1 LABORATORY ACCREDITATION

To undertake all analytical testing, EI commissioned SGS as the primary laboratory and Envirolab as the secondary laboratory. SGS and Envirolab, both established analytical laboratories which operate in accordance with the guidelines set out in ISO/IEC Guide 25 "General requirements for the competence of calibration and testing laboratories", conducted all respective analyses using National Association Testing Authorities (NATA)-registered procedures.

In relation to contingencies, should the pre-determined DQOs not be achieved, in accordance with each laboratory's QC policy (**Appendix J**), respective tests would be accordingly repeated. Should the results again fall outside the DQOs, then sample heterogeneity may be assumed and written comment will be provided to this effect on the final laboratory certificate. The laboratory QA/QC reports are included in **Appendix J**.

13.2 SAMPLE HOLDING TIMES

Sample holding times were within the laboratory DQOs, which were consistent with standard environmental protocols as tabulated in **Appendix J**, **Tables QC1** and **QC2**.

13.3 TEST METHODS AND PRACTICAL QUANTITATION LIMITS (PQLS)

Practical Quantitation Limits for all tested parameters during the assessment of soils and groundwater are presented in Appendix J, Tables QC3 and QC4, with the exception of samples with the following job;

• SE183173 (Groundwater Samples) – 3 samples for pH in water.

13.4 METHOD BLANKS

Concentrations of all parameters in method blanks during the assessment were below the laboratory PQLs and were therefore within the DAC.

13.5 LABORATORY DUPLICATE SAMPLES

The Laboratory Duplicate Samples (LDS) for the analysis batches showed calculated RPDs that were within acceptable ranges and conformed to the DAC, with the exception of samples within the following job:

• SE182724 (Soil Samples) – three samples for total recoverable metals.

I3.6 LABORATORY CONTROL SAMPLES

The Laboratory Control Samples for the analysis batches were within acceptable ranges and conformed to the DAC.

13.7 MATRIX SPIKES

All matrix spikes for the respective sample batches were within acceptable ranges and conformed to the DAC, with the exception of samples within the following job:

Detailed Site Investigation 242-244 Young Street, Waterloo NSW Report No. E23915.E02_Rev0

• SE182724 (Soil Samples) – one sample for mercury, three samples for total recoverable metals and 3 samples for TRH.

I3.8 SURROGATE

Recovery results for all surrogate samples conformed to the DAC.

13.9 CONCLUDING REMARK

Based on the laboratory QA/QC results EI considers that although one discrepancy was identified, which was attributed to the non-homogenous nature of the submitted sample, the data generally confirms that the analytical results for the various phases of laboratory testing were valid and useable for interpretation purposes.

848

APPENDIX J Laboratory QA/AC Policies and DQOs

AUSTRALIA - ENVIRONMENTAL SERVICES - MANAGEMENT PLAN QA QC PLAN

Approved: T. Pilbeam

SGS Environmental Services is accredited by NATA for Chemical Testing (Reg.No.2562) and Quality System compliance to ISO/IEC 17025. The QC parameters contained within are designed to meet NEPM 1999 requirements.

Quality Control samples included in any analytical run are listed below.

Reagent/Analysis Blank (BLK) Method Blank (MB)	Sample free reagents carried through the preparation/extraction/digestion procedure and analysed at the beginning of every sample batch analysis. A reagent blank is prepared and analysed with every batch of samples plus with each new batch of solvent prior to use.
Sample Matrix Spike (MS) & Matrix Spike Duplicate (MSD)	Sample replicates spiked with identical concentrations of target analyte(s). The spiking occurs during the sample preparation and prior to the extraction/digestion procedure. They are used to document the precision and bias of a method in a given sample matrix. Where there is not enough sample available to prepare a spiked sample, another known soil/sand or water may be used. A duplicate spiked sample is analysed at least every 20 samples.
Surrogate Spike (SS)	At least one but up to three surrogate compounds are added to all samples requiring analysis for organics prior to extraction. Used to determine the extraction efficiency. They are organic compounds which are similar to the target analyte(s) in chemical composition and behaviour in the analytical process, but which are not normally found in environmental samples. Where possible they are surrogate compounds recommended by the USEPA.
Control Matrix Spike (CMS)	To ensure spike recoveries can be determined for every batch of samples a control matrix is spiked with identical concentrations of target analyte(s) and then analysed. These results allow recoveries to be determined in the event that the matrix spikes are unusable (eg. matrix spikes performed on heavily contaminated samples). These are analysed at least every 20 samples.
Internal Standard (IS)	Added to all samples requiring analysis for organics (where relevant) after the extraction process; the compounds serve to give a standard of retention time and response, which is invariant from run-to-run with the instruments. Where possible they are standard compounds recommended by the USEPA.
Lab Duplicates (D)	A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.
Lab Control Standards/Samples (LCS)	Prepared from a source independent of the calibration standards. At least one control standard is included in each run to confirm calibration validity. Thereafter they are analysed at least every one in 20 samples plus at the end of each analytical run. This data is not reported.
Continuous Calibration Verification (CCV) or	A calibration check standard or CCV and blank are run after every 20 samples of an instrumental analysis run to assess analytical drift.
Calibration Check Standard & Blank	Calibration Standards are checked old versus new with a criteria of ±10%

AUSTRALIA - ENVIRONMENTAL SERVICES - MANAGEMENT PLAN QA QC PLAN

Approved: T. Pilbeam

Quality Assurance Programs are listed below:

Quality control data is plotted on control charts using the APHA procedure with warning and control limits at 2 and 3 standard deviations respectively. See also QMS Procedure "Statistical Quality Control".
Certified Reference Materials and Standards are regularly analysed. These materials/standards have certified reference values for various parameters.
Regular proficiency test samples are analysed by our laboratories. SGS Environmental participates in a number of programs. Results and proficiency status are compiled and sent to participating laboratory post data interpretation. Failure to comply with acceptable values result in further investigations.
SGS Environmental Services has schedules in the Quality Systems to participate in Inter/Intra laboratory testing conducted internally and by other parties.
Failure to meet the internal acceptance criteria will result in sample batch repeats dependent upon investigation outcomes. For data to be accepted:
 For all inorganic analytes the Reagent & Method Blanks must be less than the LOR. The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within ±15%. Control Standards must be 80-120% of the accepted value. The Calibration Check Blanks must be less than the LOR. Lab Duplicates RPD to be <15%*. Note: If client field duplicates do not meet this criteria it may indicate heterogeneity and shall be noted on the data reports for QC samples. Sample (and if applicable Control) Matrix Spike. Duplicate recovery RPD to be <30%. Where CRMs are used, results to be within ±2 standard deviations of the expected value. Inorganics (soil samples) For all inorganic analytes the Reagent & Method Blanks must be less than the LOR. The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within±15%. Control Standards must be 80-120% of the accepted value. The Calibration Check Blanks must be less than the LOR. Lab duplicate RPD to be <30%* for sample results greater than 10 times LOR. Sample Matrix Spike Duplicate (MS²/MSD) recovery RPD to be <30%. In the event that the matrix spike has been applied to samples whose matrix or contamination is problematic to the method then these acceptance criteria apply to the Control Matrix Spike (CMS/D). Where CRMs are used, results to be within ± 2 standard deviations of the expected value.

Approved: T. Pilbeam

Organics

- Volatile & extractable Reagent & Method Blanks must contain levels less than or equal to LOR.
- The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within [±]25%. Some analytes may have specific criteria.
- Control Standards (LCS/CMS) and Certified Reference Materials (CRM) recoveries are to be within established control limits or as a default 60-140% unless compound specific limits apply.
- Retention times are to vary by no more than 0.2 min.
- At least two of three routine level soil sample Surrogate Spike (SS) recoveries are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as acceptance criterion. Any recoveries outside these limits will have comment.
- Water sample Surrogates Spike (SS) recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion. Any recoveries outside these limits will have comment.
- Lab Duplicates (D) must have a RPD <30%*.
- Sample Matrix Spike Duplicate (MS^{-//}MSD) recovery RPD to be <30%. In the event that the matrix spike has been applied to samples whose matrix or contamination is problematic to the method then these acceptance criteria apply to the Control Matrix Spike (CMS/D).

Data Acceptance Criteria

Unless otherwise specified in the method or method manual the following general criteria apply to all organic tests.

All recoveries are to be reported to 3 significant figures.

- *Only if results are at least 10 times the LOR otherwise no acceptance criteria for RPD's apply. Application of more stringent criteria shall be applied for clean water sample from water boards and any other nominated client contracts. Nominal 10xLOR criteria are dropped to 5xLOR where specified.
- ¹⁷Matrix do not readily equate to definitive recovery due to inherent matrix interferences and thus do not have recovery compliance values set. As a guide inorganic recoveries should be between 70-130% and for organics 60-130%

Batch Structure Summary

An analytical batch is nominally considered as 20 samples or smaller. As a standard template the following should be **used as a guide** according to the above Quality Control Types:

1	MB	16	UNK_DUP
2	STD1	17	MS
3	STD2	18	MS_DUP
4	STD3	19	UNK 11
5	LCS	20	UNK 12
6	BLK	21	UNK 13
7	UNK 1	22	UNK 14
8	UNK 2	23	UNK 15
9	UNK 3	24	UNK 16
10	UNK 4	25	UNK 17
11	UNK 5	26	UNK 18
12	UNK 6	27	UNK 19
13	UNK 7	28	UNK 20 (SS if applicable)
14	UNK 8	29	UNK_DUP
15	UNK 9	30	CCV
16	UNK 10 (SS if applicable)	31	CRM / SRM / CMS / LCS

Table QC1 - Containers, F	Table QC1 - Containers, Preservation Requirements and Holding Times - Soil									
Parameter	Container	Preservation	Maximum Holding Time							
Acid digestible metals and metalloids - Total and TCLP (As,Cd.,Cu,Cr,Ni,Pb,Zn)	Glass with Teflon Lid	Nil	6 months							
Mercury	Glass with Teflon Lid	Nil	28 days							
TPH / BTEX / VOC / SVOC / CHC	Glass with Teflon Lid	4°C, zero headspace	14 days							
PAHs (total and TCLP)	Glass with Teflon Lid	4°C 1	14 days							
Phenols	Glass with Teflon Lid	4°C 1	14 days							
OCPs, OPPs and total PCBs	Glass with Teflon Lid	4°C 1	14 days							
Asbestos	Sealed Plastic Bag	Nil	N/A							

Table QC2 - Containers, Preservation Requirements and Holding Times - Water									
Parameter	Container Volume (mL)	Preservation	Maximum Holding Time						
Heavy Metals	125mL Plastic	Field filtration 0.45μm HNO ₃ / 4°C	6 months						
Cyanide	125mL Amber Glass	pH > 12 NaOH / 4°C	6 months						
TPH (C6-C9) / BTEX / VOCs SVOCs / CHCs	4 x 43mL Glass	HCI / 4°C ¹	14 days						
TPH (C10-C36) / PAH / Phenolics OCP / OPP / TDS / pH	3 x 1L Amber Glass	None / 4°C ¹	28 days						

Notes: ¹ = Extraction within 14 days, Analysis within 40 days.

Table QC3 - Analytical Parameters, PQLs and Methods - Soil										
Parameter	Unit	PQL	Method Reference							
	Meta	ls in Soil								
Arsenic - As ¹	mg / kg	1	USEPA 200.7							
Cadmium - Cd ¹	mg / kg	0.5	USEPA 200.7							
Chromium - Cr1	mg / kg	1	USEPA 200.7							
Copper - Cu ¹	mg / kg	1	USEPA 200.7							
Lead - Pb ¹	mg / kg	1	USEPA 200.7							
Mercury - Hg ²	mg / kg	0.1	USEPA 7471A							
Nickel - Ni ¹	mg / kg	1	USEPA 200.7							
Zinc - Zn ¹	mg / kg	1	USEPA 200.7							
Total Petroleum Hydrocarbons (TPHs) in Soil										
C ₆ -C ₉ fraction	mg / kg	25	USEPA 8260							
C ₁₀ -C ₁₄ fraction	mg / kg	50	USEPA 8000							
C ₁₅ -C ₂₈ fraction	mg / kg	100	USEPA 8000							
C ₂₉ -C ₃₆ fraction	mg / kg	100	USEPA 8000							
	BTE	X in Soil								
Benzene	mg / kg	1	USEPA 8260							
Toluene	mg / kg	1	USEPA 8260							
Ethylbenzene	mg / kg	1	USEPA 8260							
m & p Xylene	mg / kg	2	USEPA 8260							
o- Xylene	mg / kg	1	USEPA 8260							
	Other Organic C	ontaminants i	n Soil							
PAHs	mg / kg	0.05-0.2	USEPA 8270							
CHCs	mg / kg	1	USEPA 8260							
VOCs	mg / kg	1	USEPA 8260							
SVOCs	mg / kg	1	USEPA 8260							
OCPs	mg / kg	0.1	USEPA 8140, 8080							
OPPs	mg / kg	0.1	USEPA 8140, 8080							
PCBs	mg / kg	0.1	USEPA 8080							
Phenolics	mg / kg	5	APHA 5530							
	As	bestos								
Asbestos	mg / kg	Presence / Absence	AS4964-2004							

Notes:

^{1.} Acid Soluble Metals by ICP-AES

^{2.} Total Recoverable Mercury

Table QC4 - Analytical Parameters, PQLs and Methods - Groundwater

Parameter	Unit	PQL	Method	Parameter	Unit	PQL	Method
	Heavy	Metals		Chlorinated	l Hydrod	arbons	(CHCs)
Antimony - Sb	μg/L	1	USEPA 200.8	1,2-dichlorobenzene	μg/L	1	USEPA 8260B
Arsenic - As	μg/L	1	USEPA 200.8	1,3-dichlorobenzene	μg/L	1	USEPA 8260B
Beryllium - Be	μg/L	0.5	USEPA 200.8	1,4-dichlorobenzene	μg/L	1	USEPA 8260B
Cadmium - Cd	μ g /L	0.1	USEPA 200.8	1,2,3-trichlorobenzene	μg/L	1	USEPA 8260B
Chromium - Cr	μ g /L	1	USEPA 200.8	1,2,4-trichlorobenzene	μg/L	1	USEPA 8260B
Cobalt - Co	μ g /L	1	USEPA 200.8	Hexachlorobutadeine	μg/L	1	USEPA 8260B
Copper - Cu	μ g /L	1	USEPA 200.8	1,1,2-trichloroethane	μg/L	1	USEPA 8260B
Lead - Pb	μ g /L	1	USEPA 200.8	Hexachloroethane	μg/L	10	USEPA 8270D
Mercury - Hg	μg/L	0.5	USEPA 7471A	Other CHCs	μg/L	1	USEPA 8260B
Molybdenum - Mo	μg/L	1	USEPA 200.8	Volatile Orga		npound	s (VOCs)
Nickel - Ni	μg/L	1	USEPA 200.8	Aniline	μg/L	10	USEPA 8260B
Selenium - Se	μg/L	1	USEPA 200.8	2,4-dichloroaniline	μg/L	10	USEPA 8260B
Silver - Ag	μg/L	1	USEPA 200.8	3,4-dichloroaniline	μg/L	10	USEPA 8260B
Tin (inorg.) - Sn	μg/L	1	USEPA 200.8	Nitrobenzene	μg/L	50	USEPA 8260B
Nickel - Ni	μg/L	1	USEPA 200.8	2,4-dinitrotoluene	μg/L	50	USEPA 8260B
Zinc - Zn	μg/L	1	USEPA 200.8	2,4,6-trinitrotoluene	μg/L	50	USEPA 8260B
		drocarb	ons (TPHs)			npound	
C ₆ -C ₉ fraction	μg/L	10	USEPA 8220A / 8000	Phenol	μg/L	10	USEPA 8041
C ₁₀ -C ₁₄ fraction	μg/L	50	USEPA 8000	2-chlorophenol	μg/L	10	USEPA 8041
C ₁₅ -C ₂₈ fraction	μg/L	100	USEPA 8000	4-chlorophenol	μg/L	10	USEPA 8041
C ₂₉ -C ₃₆ fraction	μg/L	100	USEPA 8000	2, 4-dichlorophenol	μg/L	10	USEPA 8041
	BT	EX		2,4,6-trichlorophenol	μg/L	10	USEPA 8041
Benzene	μ g /L	1	USEPA 8220A	2,3,4,6-tetrachlorophenol	μg/L	10	USEPA 8041
Toluene	μg/L	1	USEPA 8220A	Pentachlorophenol	μg/L	10	USEPA 8041
Ethylbenzene	μg/L	1	USEPA 8220A	2,4-dinitrophenol	μg/L	10	USEPA 8041
m- & p-Xylene	μ g /L	2	USEPA 8220A	Miscella	aneous	Parame	ters
o-Xylene	μg/L	1	USEPA 8220A	Total Cyanide	μg/L	5	APHA 4500C&E-CN
Polyciclic Are	omatic F	lydrocai	rbons (PAHs)	Fluoride	μg/L	10	APHA 4500 F-C
PAHs	μg/L	0.1	USEPA 8270	Salinity (TDS)	mg/L	1	APHA 2510
Benzo(a)pyrene	μg/L	0.01	USEPA 8270	рН	units	0.1	APHA 4500H+
OrganoCl	hlorine F	Pesticide	es (OCPs)	OrganoPhos	phate P	esticide	s (OPPs)
Aldrin	μg/L	0.001	USEPA 8081	Azinphos Methyl	μg/L	0.01	USEPA 8141
Chlordane	μ g /L	0.001	USEPA 8081	Chloropyrifos	μg/L	0.01	USEPA 8141
DDT Dialdria	μg/L	0.001	USEPA 8081	Diazinon Dimetheate	μg/L	0.01	USEPA 8141
Dieldrin Endosulfan	μg/L	0.001	USEPA 8081 USEPA 8081	Dimethoate Fenitrothion	μg/L	0.01	USEPA 8141 USEPA 8141
Endrin	μg/L	0.001	USEPA 8081	Malathion	μg/L μα/l	0.01	USEPA 8141
Heptachlor	μg/L μg/L	0.001	USEPA 8081	Parathion	μg/L μg/L	0.01	USEPA 8141
Lindane	μg/L μg/L	0.001	USEPA 8081	Temephos	μg/∟ μg/L	0.01	USEPA 8141
Toxaphene	μg/L μg/L	0.001	USEPA 8081	Polychlorin			
•	regr ⊑	2.00.	222.7.3001	Individual PCBs	μg/L	0.01	USEPA 8081

QC Sample Type	Method of Assessment	Acceptable Range
	Field QC	
Blind Duplicates and Split Samples	The assessment of split duplicate is undertaken by calculating the Relative Percent Difference (RPD) of the duplicate concentration compared with the primary sample concentration. The RPD is defined as:	The acceptable range depends upon the levels detected: - 0-150% RPD (when the average concentration is <5 times the LOR/PQL) - 0-75% RPD (when the average concentration is 5 to 10 times the LOR/PQL) - 0-50% RPD (when the average concentration is >10 times the LOR/PQL)
Rinsate & Trip Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>
Laboratory prepared Trip Spike	The Trip Spike is analysed after returning from the field and the % recovery of the known spike is calculated.	70 - 130%
	Laboratory QC	
Laboratory Duplicates	Assessment of Lab Duplicate RPD as per Blind Duplicates and Split Samples.	Lab Duplicate RPD < 15% (Inorganics) Lab Duplicate RPD < 30% (Organics) for sample results > 10 LOR
Surrogates	Assessment is undertaken by determining the percent recovery of the known surrogate spike (SS) or addition to the sample.	at least 2 SS recoveries to be within 70-130% subject to matrix effects (Organics)
Matrix Spikes Laboratory Control Samples	% Recovery = 100 x — B	80-120% (Inorganics / Metals) 60-140% (Organics) 10-140% (SVOC and Speciated Phenols)
	Where: A = Concentration of analyte determined in the original sample; B = Added Concentration; and C = Calculated Concentration.	If the result is outside the above ranges, the result must be <3x Standard Deviation of the Historical Mean (calculated over the past 12 months).
Sample Matrix Spike Duplicates	Recovery RPD	<30% (Inorganics & Organics)
Calibration Check Standars	Continuous Calibration Verification (CCV)	CCV must be within ±15% (inorganics) CCV must be within ±25% (inorganics)
Reagent, Method & Calibration Check Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>

1 item

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS _____ LABORATORY DETAILS .____

Contact David Rizkalla Manager Huong Crawford

Client El AUSTRALIA Laboratory SGS Alexandria Environmental
Address SUITE 6.01 Address Unit 16, 33 Maddox St

55 MILLER STREET Alexandria NSW 2015
PYRMONT NSW 2009

 Telephone
 61 2 95160722
 Telephone
 +61 2 8594 0400

 Facsimile
 (Not specified)
 Facsimile
 +61 2 8594 0499

Email david.rizkallar@eiaustralia.com.au Email au.environmental.sydney@sgs.com

 Project
 E23915 242-244 Young St Waterloo NSW
 SGS Reference
 SE182724 R0

 Order Number
 E23915
 Date Received
 16 Aug 2018

 Order Number
 E23915
 Date Received
 16 Aug 2018

 Samples
 22
 Date Reported
 23 Aug 2018

COMMENTS

Matrix Spike

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client.

This QA/QC Statement must be read in conjunction with the referenced Analytical Report.

The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Mercury in Soil

Duplicate Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES 3 items

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES 3 iter

TRH (Total Recoverable Hydrocarbons) in Soil 3 items

SAMPLE SUMMARY

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_1.2-1.3	SE182724.003	LB154426	15 Aug 2018	16 Aug 2018	12 Sep 2018	17 Aug 2018	12 Sep 2018	23 Aug 2018
BH2_0.3-0.4	SE182724.006	LB154426	15 Aug 2018	16 Aug 2018	12 Sep 2018	17 Aug 2018	12 Sep 2018	23 Aug 2018
BH8_1.7-1.8	SE182724.013	LB154426	15 Aug 2018	16 Aug 2018	12 Sep 2018	17 Aug 2018	12 Sep 2018	23 Aug 2018
BH9M_1.8-1.9	SE182724.015	LB154426	15 Aug 2018	16 Aug 2018	12 Sep 2018	17 Aug 2018	12 Sep 2018	23 Aug 2018
BH10M_1.7-1.8	SE182724.017	LB154426	15 Aug 2018	16 Aug 2018	12 Sep 2018	17 Aug 2018	12 Sep 2018	23 Aug 2018

Fibre Identification in soil

Method: ME-(AU)-[ENV]AN602

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.3-0.4	SE182724.001	LB154622	15 Aug 2018	16 Aug 2018	15 Aug 2019	21 Aug 2018	15 Aug 2019	23 Aug 2018
BH1M_0.5-0.6	SE182724.002	LB154622	15 Aug 2018	16 Aug 2018	15 Aug 2019	21 Aug 2018	15 Aug 2019	23 Aug 2018
BH2_0.1-0.2	SE182724.005	LB154622	15 Aug 2018	16 Aug 2018	15 Aug 2019	21 Aug 2018	15 Aug 2019	23 Aug 2018
BH3_0.2-0.3	SE182724.007	LB154622	15 Aug 2018	16 Aug 2018	15 Aug 2019	21 Aug 2018	15 Aug 2019	23 Aug 2018
BH4_0.2-0.3	SE182724.008	LB154622	15 Aug 2018	16 Aug 2018	15 Aug 2019	21 Aug 2018	15 Aug 2019	23 Aug 2018
BH5_0.1-0.2	SE182724.009	LB154622	15 Aug 2018	16 Aug 2018	15 Aug 2019	21 Aug 2018	15 Aug 2019	23 Aug 2018
BH6_0.2-0.3	SE182724.010	LB154622	15 Aug 2018	16 Aug 2018	15 Aug 2019	21 Aug 2018	15 Aug 2019	23 Aug 2018
BH7_0.3-0.4	SE182724.011	LB154622	15 Aug 2018	16 Aug 2018	15 Aug 2019	21 Aug 2018	15 Aug 2019	23 Aug 2018
BH8_0.3-0.4	SE182724.012	LB154622	15 Aug 2018	16 Aug 2018	15 Aug 2019	21 Aug 2018	15 Aug 2019	23 Aug 2018
BH9M_0.3-0.4	SE182724.014	LB154622	15 Aug 2018	16 Aug 2018	15 Aug 2019	21 Aug 2018	15 Aug 2019	23 Aug 2018
BH10M_0.4-0.5	SE182724.016	LB154622	15 Aug 2018	16 Aug 2018	15 Aug 2019	21 Aug 2018	15 Aug 2019	23 Aug 2018

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE182724.022	LB154385	15 Aug 2018	16 Aug 2018	12 Sep 2018	17 Aug 2018	12 Sep 2018	20 Aug 2018

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.3-0.4	SE182724.001	LB154680	15 Aug 2018	16 Aug 2018	12 Sep 2018	22 Aug 2018	12 Sep 2018	23 Aug 2018
BH1M_0.5-0.6	SE182724.002	LB154680	15 Aug 2018	16 Aug 2018	12 Sep 2018	22 Aug 2018	12 Sep 2018	23 Aug 2018
BH1M_1.2-1.3	SE182724.003	LB154680	15 Aug 2018	16 Aug 2018	12 Sep 2018	22 Aug 2018	12 Sep 2018	23 Aug 2018
BH1M_3.4-3.5	SE182724.004	LB154680	15 Aug 2018	16 Aug 2018	12 Sep 2018	22 Aug 2018	12 Sep 2018	23 Aug 2018
BH2_0.1-0.2	SE182724.005	LB154680	15 Aug 2018	16 Aug 2018	12 Sep 2018	22 Aug 2018	12 Sep 2018	23 Aug 2018
BH2_0.3-0.4	SE182724.006	LB154680	15 Aug 2018	16 Aug 2018	12 Sep 2018	22 Aug 2018	12 Sep 2018	23 Aug 2018
BH3_0.2-0.3	SE182724.007	LB154680	15 Aug 2018	16 Aug 2018	12 Sep 2018	22 Aug 2018	12 Sep 2018	23 Aug 2018
BH4_0.2-0.3	SE182724.008	LB154680	15 Aug 2018	16 Aug 2018	12 Sep 2018	22 Aug 2018	12 Sep 2018	23 Aug 2018
BH5_0.1-0.2	SE182724.009	LB154680	15 Aug 2018	16 Aug 2018	12 Sep 2018	22 Aug 2018	12 Sep 2018	23 Aug 2018
BH6_0.2-0.3	SE182724.010	LB154680	15 Aug 2018	16 Aug 2018	12 Sep 2018	22 Aug 2018	12 Sep 2018	23 Aug 2018
BH7_0.3-0.4	SE182724.011	LB154680	15 Aug 2018	16 Aug 2018	12 Sep 2018	22 Aug 2018	12 Sep 2018	23 Aug 2018
BH8_0.3-0.4	SE182724.012	LB154680	15 Aug 2018	16 Aug 2018	12 Sep 2018	22 Aug 2018	12 Sep 2018	23 Aug 2018
BH8_1.7-1.8	SE182724.013	LB154680	15 Aug 2018	16 Aug 2018	12 Sep 2018	22 Aug 2018	12 Sep 2018	23 Aug 2018
BH9M_0.3-0.4	SE182724.014	LB154680	15 Aug 2018	16 Aug 2018	12 Sep 2018	22 Aug 2018	12 Sep 2018	23 Aug 2018
BH9M_1.8-1.9	SE182724.015	LB154680	15 Aug 2018	16 Aug 2018	12 Sep 2018	22 Aug 2018	12 Sep 2018	23 Aug 2018
BH10M_0.4-0.5	SE182724.016	LB154680	15 Aug 2018	16 Aug 2018	12 Sep 2018	22 Aug 2018	12 Sep 2018	23 Aug 2018
BH10M_1.7-1.8	SE182724.017	LB154680	15 Aug 2018	16 Aug 2018	12 Sep 2018	22 Aug 2018	12 Sep 2018	23 Aug 2018
BH10M_2.4-2.5	SE182724.018	LB154680	15 Aug 2018	16 Aug 2018	12 Sep 2018	22 Aug 2018	12 Sep 2018	23 Aug 2018
QD1	SE182724.019	LB154680	15 Aug 2018	16 Aug 2018	12 Sep 2018	22 Aug 2018	12 Sep 2018	23 Aug 2018

Moisture Content

Method: ME-(AU)-[ENV]AN002

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.3-0.4	SE182724.001	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018
BH1M_0.5-0.6	SE182724.002	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018
BH1M_1.2-1.3	SE182724.003	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018
BH1M_3.4-3.5	SE182724.004	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018
BH2_0.1-0.2	SE182724.005	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018
BH2_0.3-0.4	SE182724.006	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018
BH3_0.2-0.3	SE182724.007	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018
BH4_0.2-0.3	SE182724.008	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018
BH5_0.1-0.2	SE182724.009	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018
BH6_0.2-0.3	SE182724.010	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018
BH7_0.3-0.4	SE182724.011	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018
BH8_0.3-0.4	SE182724.012	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018
BH8_1.7-1.8	SE182724.013	LB154681	15 Aug 2018	16 858 18	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018

23/8/2018 Page 2 of 27

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content (continued) Method: ME-(AU)-[ENV]AN002

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH9M_0.3-0.4	SE182724.014	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018
BH9M_1.8-1.9	SE182724.015	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018
BH10M_0.4-0.5	SE182724.016	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018
BH10M_1.7-1.8	SE182724.017	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018
BH10M_2.4-2.5	SE182724.018	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018
QD1	SE182724.019	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018
TS	SE182724.020	LB154681	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	27 Aug 2018	22 Aug 2018

OC Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.3-0.4	SE182724.001	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_0.5-0.6	SE182724.002	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_1.2-1.3	SE182724.003	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_3.4-3.5	SE182724.004	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.1-0.2	SE182724.005	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.3-0.4	SE182724.006	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH3_0.2-0.3	SE182724.007	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH4_0.2-0.3	SE182724.008	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH5_0.1-0.2	SE182724.009	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH6_0.2-0.3	SE182724.010	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH7_0.3-0.4	SE182724.011	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH8_0.3-0.4	SE182724.012	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH8_1.7-1.8	SE182724.013	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH9M_0.3-0.4	SE182724.014	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH9M_1.8-1.9	SE182724.015	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_0.4-0.5	SE182724.016	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_1.7-1.8	SE182724.017	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_2.4-2.5	SE182724.018	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
QD1	SE182724.019	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018

OP Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.3-0.4	SE182724.001	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_0.5-0.6	SE182724.002	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_1.2-1.3	SE182724.003	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_3.4-3.5	SE182724.004	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.1-0.2	SE182724.005	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.3-0.4	SE182724.006	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH3_0.2-0.3	SE182724.007	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH4_0.2-0.3	SE182724.008	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH5_0.1-0.2	SE182724.009	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH6_0.2-0.3	SE182724.010	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH7_0.3-0.4	SE182724.011	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH8_0.3-0.4	SE182724.012	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH8_1.7-1.8	SE182724.013	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH9M_0.3-0.4	SE182724.014	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH9M_1.8-1.9	SE182724.015	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_0.4-0.5	SE182724.016	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_1.7-1.8	SE182724.017	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_2.4-2.5	SE182724.018	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
QD1	SE182724.019	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.3-0.4	SE182724.001	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_0.5-0.6	SE182724.002	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_1.2-1.3	SE182724.003	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_3.4-3.5	SE182724.004	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.1-0.2	SE182724.005	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.3-0.4	SE182724.006	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH3_0.2-0.3	SE182724.007	LB154679	15 Aug 2018	16 8 953918	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
				009				

23/8/2018 Page 3 of 27

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH4_0.2-0.3	SE182724.008	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH5_0.1-0.2	SE182724.009	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH6_0.2-0.3	SE182724.010	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH7_0.3-0.4	SE182724.011	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH8_0.3-0.4	SE182724.012	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH8_1.7-1.8	SE182724.013	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH9M_0.3-0.4	SE182724.014	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH9M_1.8-1.9	SE182724.015	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_0.4-0.5	SE182724.016	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_1.7-1.8	SE182724.017	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_2.4-2.5	SE182724.018	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
QD1	SE182724.019	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018

PCBs in Soil

Method: ME-(AU)-[ENV]AN420

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.3-0.4	SE182724.001	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_0.5-0.6	SE182724.002	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_1.2-1.3	SE182724.003	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_3.4-3.5	SE182724.004	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.1-0.2	SE182724.005	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.3-0.4	SE182724.006	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH3_0.2-0.3	SE182724.007	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH4_0.2-0.3	SE182724.008	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH5_0.1-0.2	SE182724.009	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH6_0.2-0.3	SE182724.010	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH7_0.3-0.4	SE182724.011	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH8_0.3-0.4	SE182724.012	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH8_1.7-1.8	SE182724.013	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH9M_0.3-0.4	SE182724.014	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH9M_1.8-1.9	SE182724.015	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_0.4-0.5	SE182724.016	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_1.7-1.8	SE182724.017	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_2.4-2.5	SE182724.018	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
QD1	SE182724.019	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_1.2-1.3	SE182724.003	LB154726	15 Aug 2018	16 Aug 2018	22 Aug 2018	22 Aug 2018	23 Aug 2018	22 Aug 2018
BH2_0.3-0.4	SE182724.006	LB154726	15 Aug 2018	16 Aug 2018	22 Aug 2018	22 Aug 2018	23 Aug 2018	22 Aug 2018
BH8_1.7-1.8	SE182724.013	LB154726	15 Aug 2018	16 Aug 2018	22 Aug 2018	22 Aug 2018	23 Aug 2018	22 Aug 2018
BH9M_1.8-1.9	SE182724.015	LB154726	15 Aug 2018	16 Aug 2018	22 Aug 2018	22 Aug 2018	23 Aug 2018	22 Aug 2018
BH10M_1.7-1.8	SE182724.017	LB154726	15 Aug 2018	16 Aug 2018	22 Aug 2018	22 Aug 2018	23 Aug 2018	22 Aug 2018

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.3-0.4	SE182724.001	LB154675	15 Aug 2018	16 Aug 2018	11 Feb 2019	22 Aug 2018	11 Feb 2019	23 Aug 2018
BH1M_0.5-0.6	SE182724.002	LB154675	15 Aug 2018	16 Aug 2018	11 Feb 2019	22 Aug 2018	11 Feb 2019	23 Aug 2018
BH1M_1.2-1.3	SE182724.003	LB154675	15 Aug 2018	16 Aug 2018	11 Feb 2019	22 Aug 2018	11 Feb 2019	23 Aug 2018
BH1M_3.4-3.5	SE182724.004	LB154675	15 Aug 2018	16 Aug 2018	11 Feb 2019	22 Aug 2018	11 Feb 2019	23 Aug 2018
BH2_0.1-0.2	SE182724.005	LB154675	15 Aug 2018	16 Aug 2018	11 Feb 2019	22 Aug 2018	11 Feb 2019	23 Aug 2018
BH2_0.3-0.4	SE182724.006	LB154675	15 Aug 2018	16 Aug 2018	11 Feb 2019	22 Aug 2018	11 Feb 2019	23 Aug 2018
BH3_0.2-0.3	SE182724.007	LB154675	15 Aug 2018	16 Aug 2018	11 Feb 2019	22 Aug 2018	11 Feb 2019	23 Aug 2018
BH4_0.2-0.3	SE182724.008	LB154675	15 Aug 2018	16 Aug 2018	11 Feb 2019	22 Aug 2018	11 Feb 2019	23 Aug 2018
BH5_0.1-0.2	SE182724.009	LB154675	15 Aug 2018	16 Aug 2018	11 Feb 2019	22 Aug 2018	11 Feb 2019	23 Aug 2018
BH6_0.2-0.3	SE182724.010	LB154675	15 Aug 2018	16 Aug 2018	11 Feb 2019	22 Aug 2018	11 Feb 2019	23 Aug 2018
BH7_0.3-0.4	SE182724.011	LB154675	15 Aug 2018	16 Aug 2018	11 Feb 2019	22 Aug 2018	11 Feb 2019	23 Aug 2018
BH8_0.3-0.4	SE182724.012	LB154675	15 Aug 2018	16 Aug 2018	11 Feb 2019	22 Aug 2018	11 Feb 2019	23 Aug 2018
BH8_1.7-1.8	SE182724.013	LB154675	15 Aug 2018	16 Aug 2018	11 Feb 2019	22 Aug 2018	11 Feb 2019	23 Aug 2018
BH9M_0.3-0.4	SE182724.014	LB154675	15 Aug 2018	16 Aug 2018	11 Feb 2019	22 Aug 2018	11 Feb 2019	23 Aug 2018
BH9M_1.8-1.9	SE182724.015	LB154675	15 Aug 2018	16 Aug 2018	11 Feb 2019	22 Aug 2018	11 Feb 2019	23 Aug 2018
BH10M_0.4-0.5	SE182724.016	LB154675	15 Aug 2018	16 A ve 2918	11 Feb 2019	22 Aug 2018	11 Feb 2019	23 Aug 2018
				()()()				

23/8/2018 Page 4 of 27

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES (continued)

Method: ME-(AU)-[ENV]AN040/AN320

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH10M_1.7-1.8	SE182724.017	LB154675	15 Aug 2018	16 Aug 2018	11 Feb 2019	22 Aug 2018	11 Feb 2019	23 Aug 2018
BH10M_2.4-2.5	SE182724.018	LB154675	15 Aug 2018	16 Aug 2018	11 Feb 2019	22 Aug 2018	11 Feb 2019	23 Aug 2018
QD1	SE182724.019	LB154675	15 Aug 2018	16 Aug 2018	11 Feb 2019	22 Aug 2018	11 Feb 2019	23 Aug 2018

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE182724.022	LB154475	15 Aug 2018	16 Aug 2018	11 Feb 2019	20 Aug 2018	11 Feb 2019	21 Aug 2018

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.3-0.4	SE182724.001	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_0.5-0.6	SE182724.002	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_1.2-1.3	SE182724.003	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_3.4-3.5	SE182724.004	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.1-0.2	SE182724.005	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.3-0.4	SE182724.006	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH3_0.2-0.3	SE182724.007	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH4_0.2-0.3	SE182724.008	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH5_0.1-0.2	SE182724.009	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH6_0.2-0.3	SE182724.010	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH7_0.3-0.4	SE182724.011	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH8_0.3-0.4	SE182724.012	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH8_1.7-1.8	SE182724.013	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH9M_0.3-0.4	SE182724.014	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH9M_1.8-1.9	SE182724.015	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_0.4-0.5	SE182724.016	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_1.7-1.8	SE182724.017	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_2.4-2.5	SE182724.018	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
QD1	SE182724.019	LB154679	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018

TRH (Total Recoverable Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN403

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE182724.022	LB154392	15 Aug 2018	16 Aug 2018	22 Aug 2018	17 Aug 2018	26 Sep 2018	22 Aug 2018

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.3-0.4	SE182724.001	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	22 Aug 2018
BH1M_0.5-0.6	SE182724.002	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	22 Aug 2018
BH1M_1.2-1.3	SE182724.003	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_3.4-3.5	SE182724.004	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.1-0.2	SE182724.005	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.3-0.4	SE182724.006	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH3_0.2-0.3	SE182724.007	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH4_0.2-0.3	SE182724.008	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH5_0.1-0.2	SE182724.009	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH6_0.2-0.3	SE182724.010	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH7_0.3-0.4	SE182724.011	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH8_0.3-0.4	SE182724.012	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH8_1.7-1.8	SE182724.013	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH9M_0.3-0.4	SE182724.014	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH9M_1.8-1.9	SE182724.015	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_0.4-0.5	SE182724.016	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_1.7-1.8	SE182724.017	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_2.4-2.5	SE182724.018	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
QD1	SE182724.019	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
TS	SE182724.020	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
ТВ	SE182724.021	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018

VOCs in Water

Sample Name Sample No. QC Ref

Method: ME-(AU)-[ENV]AN433

861

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

VOCs in Water (continued	i) Method: ME-(AU)-[ENV]AN433

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE182724.022	LB154459	15 Aug 2018	16 Aug 2018	22 Aug 2018	17 Aug 2018	26 Sep 2018	21 Aug 2018

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.3-0.4	SE182724.001	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	22 Aug 2018
BH1M_0.5-0.6	SE182724.002	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	22 Aug 2018
BH1M_1.2-1.3	SE182724.003	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH1M_3.4-3.5	SE182724.004	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.1-0.2	SE182724.005	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH2_0.3-0.4	SE182724.006	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH3_0.2-0.3	SE182724.007	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH4_0.2-0.3	SE182724.008	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH5_0.1-0.2	SE182724.009	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH6_0.2-0.3	SE182724.010	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH7_0.3-0.4	SE182724.011	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH8_0.3-0.4	SE182724.012	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH8_1.7-1.8	SE182724.013	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH9M_0.3-0.4	SE182724.014	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH9M_1.8-1.9	SE182724.015	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_0.4-0.5	SE182724.016	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_1.7-1.8	SE182724.017	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
BH10M_2.4-2.5	SE182724.018	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
QD1	SE182724.019	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
TS	SE182724.020	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018
ТВ	SE182724.021	LB154678	15 Aug 2018	16 Aug 2018	29 Aug 2018	22 Aug 2018	01 Oct 2018	23 Aug 2018

Volatile Petroleum Hydrocarbons in Water

Method: ME-(AU)-[ENV]AN433

Voladio i odolodili riyaro	Carbona in Water						Woulde. I	ME-(AO)-[E144]A14455
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE182724.022	LB154459	15 Aug 2018	16 Aug 2018	22 Aug 2018	17 Aug 2018	26 Sep 2018	21 Aug 2018

23/8/2018 Page 6 of 27

70 - 130%

70 - 130%

70 - 130%

%

84

82

84

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Pesticides in Soil				Method: ME-	(AU)-[ENV]
arameter	Sample Name	Sample Number	Units	Criteria	Recover
Fetrachloro-m-xylene (TCMX) (Surrogate)	BH1M_0.3-0.4	SE182724.001	%	60 - 130%	110
	BH1M_0.5-0.6	SE182724.002	%	60 - 130%	114
	BH2_0.1-0.2	SE182724.005	%	60 - 130%	125
	BH3_0.2-0.3	SE182724.007	%	60 - 130%	126
	BH4_0.2-0.3	SE182724.008	%	60 - 130%	119
	BH5_0.1-0.2	SE182724.009	%	60 - 130%	119
	BH6_0.2-0.3	SE182724.010	%	60 - 130%	121
	BH7_0.3-0.4	SE182724.011	%	60 - 130%	120
	BH8_0.3-0.4	SE182724.012	%	60 - 130%	117
	BH9M_0.3-0.4	SE182724.014	%	60 - 130%	114
	BH10M_0.4-0.5	SE182724.016	%	60 - 130%	107
Pesticides in Soil				Method: ME-	(AU)-[ENV
rameter	Sample Name	Sample Number	Units	Criteria	Recove
fluorobiphenyl (Surrogate)	BH1M_0.3-0.4	SE182724.001	%	60 - 130%	82
	BH1M_0.5-0.6	SE182724.002	%	60 - 130%	82
	BH2_0.1-0.2	SE182724.005	%	60 - 130%	80
	BH3_0.2-0.3	SE182724.007	%	60 - 130%	82
	BH4_0.2-0.3	SE182724.008	%	60 - 130%	78
	BH5_0.1-0.2	SE182724.009	%	60 - 130%	80
	BH6_0.2-0.3	SE182724.010	%	60 - 130%	78
	BH7_0.3-0.4	SE182724.011	%	60 - 130%	82
	BH8_0.3-0.4	SE182724.012	%	60 - 130%	78
	BH9M_0.3-0.4	SE182724.014	%	60 - 130%	76
	BH10M_0.4-0.5	SE182724.016	%	60 - 130%	88
14-p-terphenyl (Surrogate)	BH1M_0.3-0.4	SE182724.001	%	60 - 130%	84
	BH1M_0.5-0.6	SE182724.002	%	60 - 130%	88
	BH2_0.1-0.2	SE182724.005	%	60 - 130%	84
	BH3_0.2-0.3	SE182724.007	%	60 - 130%	82
	BH4_0.2-0.3	SE182724.008	%	60 - 130%	78
	BH5_0.1-0.2	SE182724.009	%	60 - 130%	78
	BH6_0.2-0.3	SE182724.010	<u>%</u> %	60 - 130%	80
	BH7_0.3-0.4 BH8_0.3-0.4	SE182724.011 SE182724.012	% %	60 - 130% 60 - 130%	94
	BH9M_0.3-0.4	SE182724.014	% %	60 - 130%	80
	BH10M_0.4-0.5	SE182724.016	%	60 - 130%	86
H. (Dahamata an Anna atta Hadra and an Alfra Call	B1110W_0.4 0.0	SE 102724.010	76		
H (Polynuclear Aromatic Hydrocarbons) in Soil	2 1 11		11.24	Method: ME-	
rameter	Sample Name BH1M 0.3-0.4	Sample Number	Units	Criteria	Recove 82
fluorobiphenyl (Surrogate)	BH1M_0.5-0.6	SE182724.001 SE182724.002	<u>%</u> %	70 - 130% 70 - 130%	82
	BH1M_0.5-0.0 BH1M_1.2-1.3	SE182724.002	% %	70 - 130%	82
	BH1M_1.2-1.3 BH1M_3.4-3.5	SE182724.003	% %	70 - 130%	80
	BH2_0.1-0.2	SE182724.005	%	70 - 130%	80
	BH2_0.3-0.4	SE182724.006	%	70 - 130%	80
	BH3_0.2-0.3	SE182724.007	%	70 - 130%	82
	BH4_0.2-0.3	SE182724.008	%	70 - 130%	78
	BH5_0.1-0.2	SE182724.009	%	70 - 130%	80
	BH6_0.2-0.3	SE182724.010	%	70 - 130%	78
	BH7_0.3-0.4	SE182724.011	%	70 - 130%	82
	BH8_0.3-0.4	SE182724.012	%	70 - 130%	78
	BH8_1.7-1.8	SE182724.013	%	70 - 130%	76
	BH9M_0.3-0.4	SE182724.014	%	70 - 130%	76
		CE402724 04E	%	70 - 130%	84
	BH9M_1.8-1.9	SE182724.015	- 70	7 0 10070	
	BH9M_1.8-1.9 BH10M_0.4-0.5	SE182724.016	%	70 - 130%	
			·		88
	BH10M_0.4-0.5	SE182724.016	%	70 - 130%	88 86 82

23/8/2018 Page 7 of 27

863

SE182724.003

SE182724.004

SE182724.005

BH1M_1.2-1.3

BH1M_3.4-3.5

BH2_0.1-0.2

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d14-p-terphenyl (Surrogate)	BH2_0.3-0.4	SE182724.006	%	70 - 130%	82
	BH3_0.2-0.3	SE182724.007	%	70 - 130%	82
	BH4_0.2-0.3	SE182724.008	%	70 - 130%	78
	BH5_0.1-0.2	SE182724.009	%	70 - 130%	78
	BH6_0.2-0.3	SE182724.010	%	70 - 130%	80
	BH7_0.3-0.4	SE182724.011	%	70 - 130%	94
	BH8_0.3-0.4	SE182724.012	%	70 - 130%	80
	BH8_1.7-1.8	SE182724.013	%	70 - 130%	76
	BH9M_0.3-0.4	SE182724.014	%	70 - 130%	80
	BH9M_1.8-1.9	SE182724.015	%	70 - 130%	86
	BH10M_0.4-0.5	SE182724.016	%	70 - 130%	86
	BH10M_1.7-1.8	SE182724.017	%	70 - 130%	86
	BH10M_2.4-2.5	SE182724.018	%	70 - 130%	80
d5-nitrobenzene (Surrogate)	BH1M_0.3-0.4	SE182724.001	%	70 - 130%	80
	BH1M_0.5-0.6	SE182724.002	%	70 - 130%	82
	BH1M_1.2-1.3	SE182724.003	%	70 - 130%	76
	BH1M_3.4-3.5	SE182724.004	%	70 - 130%	74
	BH2_0.1-0.2	SE182724.005	%	70 - 130%	82
	BH2_0.3-0.4	SE182724.006	%	70 - 130%	78
	BH3_0.2-0.3	SE182724.007	%	70 - 130%	78
	BH4_0.2-0.3	SE182724.008	%	70 - 130%	76
	BH5_0.1-0.2	SE182724.009	%	70 - 130%	76
	BH6_0.2-0.3	SE182724.010	%	70 - 130%	76
	BH7_0.3-0.4	SE182724.011	%	70 - 130%	80
	BH8_0.3-0.4	SE182724.012	%	70 - 130%	76
	BH8_1.7-1.8	SE182724.013	%	70 - 130%	76
	BH9M_0.3-0.4	SE182724.014	%	70 - 130%	74
	BH9M_1.8-1.9	SE182724.015	%	70 - 130%	80
	BH10M_0.4-0.5	SE182724.016	%	70 - 130%	78
	BH10M_1.7-1.8	SE182724.017	%	70 - 130%	78
	BH10M_2.4-2.5	SE182724.018	%	70 - 130%	74

PCBs in Soil

Method: ME-(AU)-[ENV]AN420

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH1M_0.3-0.4	SE182724.001	%	60 - 130%	110
	BH1M_0.5-0.6	SE182724.002	%	60 - 130%	114
	BH2_0.1-0.2	SE182724.005	%	60 - 130%	125
	BH3_0.2-0.3	SE182724.007	%	60 - 130%	126
	BH4_0.2-0.3	SE182724.008	%	60 - 130%	119
	BH5_0.1-0.2	SE182724.009	%	60 - 130%	119
	BH6_0.2-0.3	SE182724.010	%	60 - 130%	121
	BH7_0.3-0.4	SE182724.011	%	60 - 130%	120
	BH8_0.3-0.4	SE182724.012	%	60 - 130%	117
	BH9M_0.3-0.4	SE182724.014	%	60 - 130%	114
	BH10M_0.4-0.5	SE182724.016	%	60 - 130%	107

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH1M_0.3-0.4	SE182724.001	%	60 - 130%	84
	BH1M_0.5-0.6	SE182724.002	%	60 - 130%	100
	BH1M_1.2-1.3	SE182724.003	%	60 - 130%	73
	BH1M_3.4-3.5	SE182724.004	%	60 - 130%	77
	BH2_0.1-0.2	SE182724.005	%	60 - 130%	71
	BH2_0.3-0.4	SE182724.006	%	60 - 130%	74
	BH3_0.2-0.3	SE182724.007	%	60 - 130%	74
	BH4_0.2-0.3	SE182724.008	%	60 - 130%	88
	BH5_0.1-0.2	SE182724.009	%	60 - 130%	90
	BH6_0.2-0.3	SE182724.010	%	60 - 130%	73
	BH7_0.3-0.4	SE182724.011	%	60 - 130%	91
	BH8_0.3-0.4	SE182724.012	%	60 - 130%	122
	BH8_1.7-1.8	SE182724.013	%	60 - 130%	118
	вн9м_0.3-0.4 864	SE182724.014	%	60 - 130%	105

23/8/2018 Page 8 of 27

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued)	Method: ME-(AU)-[ENV]AN433
---------------------------	----------------------------

OC's in Soil (continued)				mountain.	E-(AU)-[ENV]AN
arameter	Sample Name	Sample Number	Units	Criteria	Recovery 9
Bromofluorobenzene (Surrogate)	BH9M_1.8-1.9	SE182724.015	%	60 - 130%	91
	BH10M_0.4-0.5	SE182724.016	%	60 - 130%	92
	BH10M_1.7-1.8	SE182724.017	%	60 - 130%	101
	BH10M_2.4-2.5	SE182724.018	%	60 - 130%	79
	QD1	SE182724.019	%	60 - 130%	97
	TS	SE182724.020	%	60 - 130%	106
	TB	SE182724.021	%	60 - 130%	83
4-1 2-dichloroethane (Surrogate)	BH1M_0.3-0.4	SE182724.001	%	60 - 130%	82
4-1,2-dichloroethane (Surrogate)			-		85
	BH1M_0.5-0.6	SE182724.002	%	60 - 130% 60 - 130%	
	BH1M_1.2-1.3	SE182724.003	%		102
	BH1M_3.4-3.5	SE182724.004	%	60 - 130%	89
	BH2_0.1-0.2	SE182724.005	%	60 - 130%	80
	BH2_0.3-0.4	SE182724.006	%	60 - 130%	93
	BH3_0.2-0.3	SE182724.007	%	60 - 130%	116
	BH4_0.2-0.3	SE182724.008	%	60 - 130%	123
	BH5_0.1-0.2	SE182724.009	%	60 - 130%	123
	BH6_0.2-0.3	SE182724.010	%	60 - 130%	113
	BH7_0.3-0.4	SE182724.011	%	60 - 130%	103
	BH8_0.3-0.4	SE182724.012	%	60 - 130%	129
	BH8_1.7-1.8	SE182724.013	%	60 - 130%	115
	BH9M_0.3-0.4	SE182724.014	%	60 - 130%	113
	BH9M_1.8-1.9	SE182724.015	%	60 - 130%	98
	BH10M_0.4-0.5	SE182724.016	%	60 - 130%	125
	BH10M_1.7-1.8	SE182724.017	%	60 - 130%	112
	BH10M_2.4-2.5	SE182724.018	%	60 - 130%	108
	QD1	SE182724.019	%	60 - 130%	115
	TS	SE182724.020	%	60 - 130%	124
	ТВ	SE182724.021	%	60 - 130%	100
8-toluene (Surrogate)	BH1M_0.3-0.4	SE182724.001	%	60 - 130%	87
	BH1M_0.5-0.6	SE182724.002	%	60 - 130%	118
	BH1M_1.2-1.3	SE182724.003	%	60 - 130%	83
	BH1M_3.4-3.5	SE182724.004	%	60 - 130%	114
	BH2_0.1-0.2	SE182724.005	%	60 - 130%	105
	BH2_0.3-0.4	SE182724.006	%	60 - 130%	83
	BH3_0.2-0.3	SE182724.007	%	60 - 130%	111
	BH4_0.2-0.3	SE182724.008	%	60 - 130%	128
	BH5_0.1-0.2	SE182724.009	%	60 - 130%	126
	BH6_0.2-0.3	SE182724.010	%	60 - 130%	116
	BH7_0.3-0.4	SE182724.011	%	60 - 130%	85
	BH8_0.3-0.4	SE182724.011		60 - 130%	
			%		82
	BH8_1.7-1.8	SE182724.013	%	60 - 130%	88
	BH9M_0.3-0.4	SE182724.014	%	60 - 130%	95
	BH9M_1.8-1.9	SE182724.015	%	60 - 130%	96
	BH10M_0.4-0.5	SE182724.016	%	60 - 130%	96
	BH10M_1.7-1.8	SE182724.017	%	60 - 130%	97
	BH10M_2.4-2.5	SE182724.018	%	60 - 130%	104
	QD1	SE182724.019	%	60 - 130%	97
	TS	SE182724.020	%	60 - 130%	101
	ТВ	SE182724.021	%	60 - 130%	90
ibromofluoromethane (Surrogate)	BH1M_0.3-0.4	SE182724.001	%	60 - 130%	82
· - ·	BH1M_0.5-0.6	SE182724.002	%	60 - 130%	88
	BH1M_1.2-1.3	SE182724.003	%	60 - 130%	90
	BH1M_3.4-3.5	SE182724.004	%	60 - 130%	94
	BH2_0.1-0.2	SE182724.005	% %	60 - 130%	75
	BH2_0.3-0.4	SE182724.006	%	60 - 130%	101
	BH3_0.2-0.3	SE182724.007	%	60 - 130%	115
	BH4_0.2-0.3	SE182724.008	%	60 - 130%	84
	BH5_0.1-0.2	SE182724.009	%	60 - 130%	104
	BH6_0.2-0.3	SE182724.010	%	60 - 130%	75
	BH7_0.3-0.4	SE182724.011	%	60 - 130%	102
	вн8_0.3-0.4 865	SE182724.012	%	60 - 130%	102

23/8/2018 Page 9 of 27

d8-toluene (Surrogate)

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC's in Soil (continued)					IE-(AU)-[ENV]A
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Dibromofluoromethane (Surrogate)	BH8_1.7-1.8	SE182724.013	%	60 - 130%	85
	BH9M_0.3-0.4	SE182724.014	%	60 - 130%	97
	BH9M_1.8-1.9	SE182724.015	%	60 - 130%	98
	BH10M_0.4-0.5	SE182724.016	%	60 - 130%	89
	BH10M_1.7-1.8	SE182724.017	%	60 - 130%	107
	BH10M_2.4-2.5	SE182724.018	%	60 - 130%	105
	QD1	SE182724.019	%	60 - 130%	84
	TS	SE182724.020	%	60 - 130%	90
	ТВ	SE182724.021	%	60 - 130%	85
OCs in Water				Method: M	IE-(AU)-[ENV]
rameter	Sample Name	Sample Number	Units	Criteria	Recover
romofluorobenzene (Surrogate)	QR1	SE182724.022	%	40 - 130%	95
I-1,2-dichloroethane (Surrogate)	QR1	SE182724.022	%	40 - 130%	114
8-toluene (Surrogate)	QR1	SE182724.022	%	40 - 130%	111
ibromofluoromethane (Surrogate)	QR1	SE182724.022	%	40 - 130%	119
	4,11	02.0272022	,,,		
atile Petroleum Hydrocarbons in Soil					IE-(AU)-[ENV
rameter	Sample Name	Sample Number	Units	Criteria	Recove
romofluorobenzene (Surrogate)	BH1M_0.3-0.4	SE182724.001	%	60 - 130%	84
	BH1M_0.5-0.6	SE182724.002	%	60 - 130%	100
	BH1M_1.2-1.3	SE182724.003	%	60 - 130%	73
	BH1M_3.4-3.5	SE182724.004	%	60 - 130%	77
	BH2_0.1-0.2	SE182724.005	%	60 - 130%	71
	BH2_0.3-0.4	SE182724.006	%	60 - 130%	74
	BH3_0.2-0.3	SE182724.007	%	60 - 130%	74
	BH4_0.2-0.3	SE182724.008	%	60 - 130%	88
	BH5_0.1-0.2	SE182724.009	%	60 - 130%	90
	BH6_0.2-0.3	SE182724.010	%	60 - 130%	73
	BH7_0.3-0.4	SE182724.011	%	60 - 130%	91
	BH8_0.3-0.4	SE182724.012	%	60 - 130%	122
	BH8_1.7-1.8	SE182724.013	%	60 - 130%	118
	BH9M_0.3-0.4	SE182724.014	%	60 - 130%	105
	BH9M_1.8-1.9	SE182724.015	%	60 - 130%	91
	BH10M_0.4-0.5	SE182724.016	%	60 - 130%	92
	BH10M_1.7-1.8	SE182724.017	%	60 - 130%	101
	BH10M_2.4-2.5	SE182724.018	%	60 - 130%	79
	QD1	SE182724.019	%	60 - 130%	97
i-1,2-dichloroethane (Surrogate)	BH1M_0.3-0.4	SE182724.001	%	60 - 130%	82
	BH1M_0.5-0.6	SE182724.002	%	60 - 130%	85
	BH1M 1.2-1.3	SE182724.003	%	60 - 130%	102
	BH1M_3.4-3.5	SE182724.004	%	60 - 130%	89
	BH2_0.1-0.2	SE182724.005	%	60 - 130%	80
	BH2_0.3-0.4	SE182724.006	%	60 - 130%	93
	BH3_0.2-0.3	SE182724.007	%	60 - 130%	116
	BH4_0.2-0.3	SE182724.008	%	60 - 130%	123
	BH5_0.1-0.2	SE182724.009	%	60 - 130%	123
	BH6_0.2-0.3	SE182724.010	%	60 - 130%	113
	BH7_0.3-0.4	SE182724.011	%	60 - 130%	103
	BH8_0.3-0.4	SE182724.012	%	60 - 130%	129
	BH8_1.7-1.8	SE182724.013	%	60 - 130%	115
	ВН9М_0.3-0.4	SE182724.014	% %	60 - 130%	113
		SE182724.015	% %		
	BH9M_1.8-1.9			60 - 130%	98
	BH10M_0.4-0.5	SE182724.016	%	60 - 130%	125
	BH10M_1.7-1.8	SE182724.017	%	60 - 130%	112
	BH10M_2.4-2.5	SE182724.018	%	60 - 130%	108
	QD1	SE182724.019	%	60 - 130%	115

23/8/2018 Page 10 of 27

866

SE182724.001

SE182724.002

SE182724.003

SE182724.004

SE182724.005

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

%

87

118

83

114

105

BH1M 0.3-0.4

BH1M_0.5-0.6

BH1M_1.2-1.3

BH1M 3.4-3.5

BH2_0.1-0.2

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d8-toluene (Surrogate)	BH2_0.3-0.4	SE182724.006	%	60 - 130%	83
	BH3_0.2-0.3	SE182724.007	%	60 - 130%	111
	BH4_0.2-0.3	SE182724.008	%	60 - 130%	128
	BH5_0.1-0.2	SE182724.009	%	60 - 130%	126
	BH6_0.2-0.3	SE182724.010	%	60 - 130%	116
	BH7_0.3-0.4	SE182724.011	%	60 - 130%	85
	BH8_0.3-0.4	SE182724.012	%	60 - 130%	82
	BH8_1.7-1.8	SE182724.013	%	60 - 130%	88
	BH9M_0.3-0.4	SE182724.014	%	60 - 130%	95
	BH9M_1.8-1.9	SE182724.015	%	60 - 130%	96
	BH10M_0.4-0.5	SE182724.016	%	60 - 130%	96
	BH10M_1.7-1.8	SE182724.017	%	60 - 130%	97
	BH10M_2.4-2.5	SE182724.018	%	60 - 130%	104
	QD1	SE182724.019	%	60 - 130%	97
Dibromofluoromethane (Surrogate)	BH1M_0.3-0.4	SE182724.001	%	60 - 130%	82
	BH1M_0.5-0.6	SE182724.002	%	60 - 130%	88
	BH1M_1.2-1.3	SE182724.003	%	60 - 130%	90
	BH1M_3.4-3.5	SE182724.004	%	60 - 130%	94
	BH2_0.1-0.2	SE182724.005	%	60 - 130%	75
	BH2_0.3-0.4	SE182724.006	%	60 - 130%	101
	BH3_0.2-0.3	SE182724.007	%	60 - 130%	115
	BH4_0.2-0.3	SE182724.008	%	60 - 130%	84
	BH5_0.1-0.2	SE182724.009	%	60 - 130%	104
	BH6_0.2-0.3	SE182724.010	%	60 - 130%	75
	BH7_0.3-0.4	SE182724.011	%	60 - 130%	102
	BH8_0.3-0.4	SE182724.012	%	60 - 130%	102
	BH8_1.7-1.8	SE182724.013	%	60 - 130%	85
	BH9M_0.3-0.4	SE182724.014	%	60 - 130%	97
	BH9M_1.8-1.9	SE182724.015	%	60 - 130%	98
	BH10M_0.4-0.5	SE182724.016	%	60 - 130%	89
	BH10M_1.7-1.8	SE182724.017	%	60 - 130%	107
	BH10M_2.4-2.5	SE182724.018	%	60 - 130%	105
	QD1	SE182724.019	%	60 - 130%	84

Volatile Petroleum Hydrocarbons in Water

Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	QR1	SE182724.022	%	40 - 130%	95
d4-1,2-dichloroethane (Surrogate)	QR1	SE182724.022	%	60 - 130%	114
d8-toluene (Surrogate)	QR1	SE182724.022	%	40 - 130%	111
Dibromofluoromethane (Surrogate)	QR1	SE182724.022	%	40 - 130%	119

23/8/2018 Page 11 of 27

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Sample Number	Parameter	Units	LOR	Result
LB154426.001	Exchangeable Sodium, Na	mg/kg	2	0
	Exchangeable Potassium, K	mg/kg	2	0
	Exchangeable Calcium, Ca	mg/kg	2	0
	Exchangeable Magnesium, Mg	mg/kg	2	0

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Sample Number	Parameter	Units	LOR	Result
LB154385.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Sample Number	Parameter	Units	LOR	Result
LB154680.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result
3154679.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	107

OP Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result
LB154679.001	Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	mg/kg	0.5	<0.5
	Diazinon (Dimpylate)	mg/kg	0.5	<0.5
	Fenitrothion	mg/kg	0.2	<0.2
	Malathion	mg/kg	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
	Bromophos Ethyl	mg/kg	0.2	<0.2
	Methidathion	mg/kg	0.5	<0.5
	Ethion	mg/kg	0.2	<0.2
Surrogates	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	2-fluorobiphenyl (Surrogate)	%	-	84
	d14-p-terphenyl (Surrogate)	%	-	86

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

Sample Number Parameter Units LOR

868

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result
LB154679.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	mg/kg	0.1	<0.1
	Fluoranthene	mg/kg	0.1	<0.1
	Pyrene	mg/kg	0.1	<0.1
	Benzo(a)anthracene	mg/kg	0.1	<0.1
	Chrysene	mg/kg	0.1	<0.1
	Benzo(a)pyrene	mg/kg	0.1	<0.1
	Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
	Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
	Benzo(ghi)perylene	mg/kg	0.1	<0.1
	Total PAH (18)	mg/kg	0.8	<0.8
Surrogates	d5-nitrobenzene (Surrogate)	%	-	76
	2-fluorobiphenyl (Surrogate)	%	-	84
	d14-p-terphenyl (Surrogate)	%	-	86

PCBs in Soil

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result
LB154679.001	Arochlor 1016	mg/kg	0.2	<0.2
	Arochlor 1221	mg/kg	0.2	<0.2
	Arochlor 1232	mg/kg	0.2	<0.2
	Arochlor 1242	mg/kg	0.2	<0.2
	Arochlor 1248	mg/kg	0.2	<0.2
	Arochlor 1254	mg/kg	0.2	<0.2
	Arochlor 1260	mg/kg	0.2	<0.2
	Arochlor 1262	mg/kg	0.2	<0.2
	Arochlor 1268	mg/kg	0.2	<0.2
	Total PCBs (Arochlors)	mg/kg	1	<1
Surrogate	es Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	107

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Sample Number	Parameter	Units	LOR	Result
LB154675.001	Arsenic, As	mg/kg	1	2
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Nickel, Ni	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Zinc, Zn	mg/kg	2	<2.0

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

Sample Number	Parameter	Units	LOR	Result
LB154475.001	Arsenic, As	μg/L	1	<1
	Cadmium, Cd	μg/L	0.1	<0.1
	Chromium, Cr	μg/L	1	<1
	Copper, Cu	μg/L	1	<1
	Lead, Pb	μg/L	1	<1
	Nickel, Ni	μg/L	1	<1
	Zinc, Zn	μg/L	5	<5

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

Sample Number	Parameter	Units	LOR	Result
LB154679.001	TRH C10-C14	mg/kg	20	<20
	TRH C15-C28	mg/kg	45	<45
	TRH C29-C36	mg/kg	45	<45
	TRH C37-C40	mg/kg	100	<100
	TRH C10-C36 Total	mg/kg	110	<110
	869			

23/8/2018 Page 13 of 27

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

TRH (Total	Recoveral	ble Hyd	drocarbons) in Wa	ter
-------	-------	-----------	---------	------------	---------	-----

Method: ME-(AU)-[ENV]AN403

Sample Number	Parameter	Units	LOR	Result
LB154392.001	TRH C10-C14	μg/L	50	<50
	TRH C15-C28	μg/L	200	<200
	TRH C29-C36	μg/L	200	<200
	TRH C37-C40	μg/L	200	<200

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB154678.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Expedic Aromatic Benzene Carbons Toluene Ethylbenzene m/p-xylene o-xylene o-xylene vclic VOCs Naphthalene gates Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
	Polycyclic VOCs	o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	96
		d4-1,2-dichloroethane (Surrogate)	%	-	110
		d8-toluene (Surrogate)	%	-	124
		Bromofluorobenzene (Surrogate)	%	-	74
	Totals	Total BTEX	mg/kg	0.6	<0.6

VOCs in Water

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB154459.001	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	μg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	101
	ourrogates	d4-1,2-dichloroethane (Surrogate)	%	-	96
		d8-toluene (Surrogate)	%	-	97
		Bromofluorobenzene (Surrogate)	%	-	105

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB154678.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	96
		d4-1,2-dichloroethane (Surrogate)	%	-	110
		d8-toluene (Surrogate)	%	-	124

Volatile Petroleum Hydrocarbons in Water

Method: ME-(AU)-[ENV]AN433

•					
Sample Number		Parameter	Units	LOR	Result
LB154459.001		TRH C6-C9	μg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)		-	108
		d4-1,2-dichloroethane (Surrogate)	%	-	106
		d8-toluene (Surrogate)	%	-	104
		Bromofluorohenzene (Surrogate)	0/2	_	94

23/8/2018 Page 14 of 27

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182734.001	LB154385.008	Mercury	μg/L	0.0001	<0.00005	<0.00005	200	188

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182724.010	LB154680.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE182724.019	LB154680.024	Mercury	mg/kg	0.05	0.11	0.08	82	26

Moisture Content

Method: ME-(AU)-[ENV]AN002

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182724.010	LB154681.011	% Moisture	%w/w	0.5	6.4	6.0	46	7
SE182724.019	LB154681.021	% Moisture	%w/w	0.5	13	13.9223560910	37	6
SE182724.020	LB154681.023	% Moisture	%w/w	0.5	4.3	4.7	52	8

OC Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182724.011	LB154679.028	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
		Alpha BHC	mg/kg	0.1	<0.1	0	200	0
		Lindane	mg/kg	0.1	<0.1	0	200	0
		Heptachlor	mg/kg	0.1	<0.1	0	200	0
		Aldrin	mg/kg	0.1	<0.1	0	200	0
		Beta BHC	mg/kg	0.1	<0.1	0	200	0
		Delta BHC	mg/kg	0.1	<0.1	0	200	0
		Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
		o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
		Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	0
		Gamma Chlordane	mg/kg	0.1	<0.1	0	200	0
		Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
		trans-Nonachlor	mg/kg	0.1	<0.1	0	200	0
		p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
		Dieldrin	mg/kg	0.2	<0.2	0	200	0
		Endrin	mg/kg	0.2	<0.2	0	200	0
		o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
		o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
		Beta Endosulfan	mg/kg	0.2	<0.2	0	200	0
		p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
		p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
		Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
		Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
		Methoxychlor	mg/kg	0.1	<0.1	0	200	0
		Endrin Ketone	mg/kg	0.1	<0.1	0	200	0
		Isodrin	mg/kg	0.1	<0.1	0	200	0
		Mirex	mg/kg	0.1	<0.1	0	200	0
		Total CLP OC Pesticides	mg/kg	1	<1	0	200	0
	Surrog	ates Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.18	0.183	30	2

OP Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182724.009	LB154679.026	Dichlorvos	mg/kg	0.5	<0.5	0	200	0
		Dimethoate	mg/kg	0.5	<0.5	0	200	0
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5	0	200	0
		Fenitrothion	mg/kg	0.2	<0.2	0	200	0
		Malathion	mg/kg	0.2	<0.2	0	200	0
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	0.04	200	0
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	0.06	200	0
		Bromophos Ethyl	mg/kg	0.2	<0.2	0.02	200	0
		Methidathion	mg/kg	0.5	<0.5	0	200	0
		Ethion	mg/kg	0.2	<0.2	0	200	0
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	0	200	0
		Total OP Pesticides* 871	mg/kg	1.7	<1.7	0	200	0

23/8/2018 Page 15 of 27

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OP Pesticides in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
LB154679.026	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	0
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	3
LB154679.025		Dichlorvos	mg/kg	0.5	<0.5	0	200	0
		Dimethoate	mg/kg	0.5	<0.5	0	200	0
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5	0	200	0
		Fenitrothion	mg/kg	0.2	<0.2	0	200	0
		Malathion	mg/kg	0.2	<0.2	0	200	0
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	0	200	0
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	0	200	0
		Bromophos Ethyl	mg/kg	0.2	<0.2	0	200	0
		Methidathion	mg/kg	0.5	<0.5	0	200	0
		Ethion	mg/kg	0.2	<0.2	0.07	200	0
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	0	200	0
		Total OP Pesticides*	mg/kg	1.7	<1.7	0	200	0
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.41	30	7
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.41	30	5
	LB154679.026	LB154679.026 Surrogates LB154679.025	LB154679.026 Surrogates 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) LB154679.025 Dichlorvos Dimethoate Diazinon (Dimpylate) Fenitrothion Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides* Surrogates 2-fluorobiphenyl (Surrogate)	LB154679.026 Surrogates 2-fluorobiphenyl (Surrogate) mg/kg LB154679.025 Dichlorvos mg/kg Dimethoate mg/kg Diazinon (Dimpylate) mg/kg Fenitrothion mg/kg Malathion mg/kg Chlorypyrifos (Chlorpyrifos Ethyl) mg/kg Parathion-ethyl (Parathion) mg/kg Bromophos Ethyl mg/kg Ethion mg/kg Azinphos-methyl (Guthion) mg/kg Total OP Pesticides* mg/kg Surrogates 2-fluorobiphenyl (Surrogate) mg/kg	LB154679.026 Surrogates 2-fluorobiphenyl (Surrogate) mg/kg - LB154679.025 Dichlorvos mg/kg 0.5 Dimethoate mg/kg 0.5 Diazinon (Dimpylate) mg/kg 0.5 Fenitrothion mg/kg 0.2 Malathion mg/kg 0.2 Chlorpyrifos (Chlorpyrifos Ethyl) mg/kg 0.2 Parathion-ethyl (Parathion) mg/kg 0.2 Bromophos Ethyl mg/kg 0.5 Ethion mg/kg 0.5 Ethion mg/kg 0.2 Azinphos-methyl (Guthion) mg/kg 0.2 Total OP Pesticides* mg/kg 1.7 Surrogates 2-fluorobiphenyl (Surrogate) mg/kg -	LB154679.026 Surrogates 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 LB154679.025 Dichlorvos mg/kg - 0.4 LB154679.025 Dichlorvos mg/kg 0.5 <0.5	LB154679.026 Surrogates 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.4 d14-p-terphenyl (Surrogate) mg/kg - 0.4 0.4 LB154679.025 Dichlorvos mg/kg 0.5 <0.5 0 Dimethoate mg/kg 0.5 <0.5 0 Diazinon (Dimpylate) mg/kg 0.5 <0.5 0 Fenitrothion mg/kg 0.5 <0.5 0 Malathion mg/kg 0.2 <0.2 0 Malathion mg/kg 0.2 <0.2 0 Parathion-ethyl (Parathion) mg/kg 0.2 <0.2 0 Bromophos Ethyl mg/kg 0.2 <0.2 0 Methidathion mg/kg 0.5 <0.5 0 Ethion mg/kg 0.5 <0.5 0 Ethion mg/kg 0.2 <0.2 0 Total OP Pesticides* mg/kg 1.7 <1.7 0 Surrogates 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.41	LB154679.026 Surrogates 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.4 30 LB154679.025 Dichlorvos mg/kg 0.5 <0.5 0 200 Dimethoate mg/kg 0.5 <0.5 0 200 Diazinon (Dimpylate) mg/kg 0.5 <0.5 0 200 Diazinon (Dimpylate) mg/kg 0.5 <0.5 0 200 Fenitrothion mg/kg 0.2 <0.2 0 200 Malathion mg/kg 0.2 <0.2 0 200 Parathion-ethyl (Parathion) mg/kg 0.2 <0.2 0 200 Parathion-ethyl (Parathion) mg/kg 0.2 <0.2 0 200 Methidathion mg/kg 0.2 <0.2 0 200 Methidathion mg/kg 0.2 <0.2 0 200 Parathion-ethyl (Parathion) mg/kg 0.2 <0.2 0 200 Methidathion mg/kg 0.5 <0.5 0 200 Ethion mg/kg 0.2 <0.2 <0.2 0 200 Ethion mg/kg 0.2 <0.2 <0.2 0 200 Azinphos-methyl (Guthion) mg/kg 0.2 <0.2 0 200 Total OP Pesticides* mg/kg 1.7 <1.7 0 200 Surrogates 2-fluorobiphenyl (Surrogate) mg/kg - 0.4 0.41 30

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
E182724.009	LB154679.026		Naphthalene	mg/kg	0.1	0.1	0.12	113	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	0.08	155	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	0.06	197	0
			Acenaphthylene	mg/kg	0.1	0.1	0.1	117	26
			Acenaphthene	mg/kg	0.1	<0.1	0.03	200	0
			Fluorene	mg/kg	0.1	<0.1	0.07	163	0
			Phenanthrene	mg/kg	0.1	0.9	0.76	42	16
			Anthracene	mg/kg	0.1	0.3	0.28	65	4
			Fluoranthene	mg/kg	0.1	1.6	1.36	37	19
			Pyrene	mg/kg	0.1	1.6	1.35	37	19
			Benzo(a)anthracene	mg/kg	0.1	1.0	0.69	42	32
			Chrysene	mg/kg	0.1	0.9	0.67	43	33
			Benzo(b&j)fluoranthene	mg/kg	0.1	1.1	0.9	40	22
			Benzo(k)fluoranthene	mg/kg	0.1	0.5	0.46	51	10
			Benzo(a)pyrene	mg/kg	0.1	1.0	0.88	41	15
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.5	0.44	51	17
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0.04	200	0
			Benzo(ghi)perylene	mg/kg	0.1	0.5	0.44	52	11
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td>1.3</td><td>1.1401</td><td>26</td><td>16</td></lor=0<>	mg/kg	0.2	1.3	1.1401	26	16
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td>1.4</td><td>1.2401</td><td>32</td><td>15</td></lor=lor<>	mg/kg	0.3	1.4	1.2401	32	15
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td>1.4</td><td>1.1901</td><td>25</td><td>16</td></lor=lor>	mg/kg	0.2	1.4	1.1901	25	16
			Total PAH (18)	mg/kg	0.8	10	8.45	39	19
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.36	30	5
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	0
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	3
SE182724.016	LB154679.025		Naphthalene	mg/kg	0.1	<0.1	0.02	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	0.03	200	0
			Acenaphthene	mg/kg	0.1	<0.1	0	200	0
			Fluorene	mg/kg	0.1	<0.1	0	200	0
			Phenanthrene	mg/kg	0.1	0.1	0.11	117	9
			Anthracene	mg/kg	0.1	<0.1	0.04	200	0
			Fluoranthene	mg/kg	0.1	0.3	0.34	60	3
			Pyrene	mg/kg	0.1	0.4	0.37	57	3
			Benzo(a)anthracene	mg/kg	0.1	0.2	0.23	77	14
			Chrysene	mg/kg	0.1	0.2	0.21	78	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	0.2	0.22	80	20
			Benzo(k)fluoranthene	mg/kg	0.1	0.1	0.12	117	9
			Benzo(a)pyrene	mg/kg	0.1	0.2	0.2	83	11
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0.1	141	0
			Dibenzo(ah)anthracene 872	mg/kg	0.1	< 0.1	0.01	200	0

23/8/2018 Page 16 of 27

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182724.016	LB154679.025		Benzo(ghi)perylene	mg/kg	0.1	<0.1	0.1	135	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td>0.2</td><td>0.2691</td><td>90</td><td>15</td></lor=0<>	mg/kg	0.2	0.2	0.2691	90	15
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td>0.3</td><td>0.3691</td><td>94</td><td>7</td></lor=lor<>	mg/kg	0.3	0.3	0.3691	94	7
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td>0.3</td><td>0.3191</td><td>76</td><td>10</td></lor=lor>	mg/kg	0.2	0.3	0.3191	76	10
			Total PAH (18)	mg/kg	0.8	1.7	1.99	73	16
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.36	30	8
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.41	30	7
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.41	30	5

PCBs in Soil

Method: ME-(AU)-[ENV]AN420

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182724.011	LB154679.026	Arochlor 1016	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1221	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1232	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1242	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1248	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1254	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1260	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1262	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1268	mg/kg	0.2	<0.2	0	200	0
		Total PCBs (Arochlors)	mg/kg	1	<1	0	200	0
	Surroga	tes Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0.183	30	2

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182724.017	LB154726.021	рН	pH Units	0.1	7.2	6.617	31	9
SE182877A.012	LB154726.022	pH	pH Units	0.1	5.9	5.846	32	0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182724.010	LB154675.014	Arsenic, As	mg/kg	1	3	2	74	23
		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
		Chromium, Cr	mg/kg	0.3	2.3	2.0	54	15
		Copper, Cu	mg/kg	0.5	6.7	7.7	37	14
		Nickel, Ni	mg/kg	0.5	1.9	2.0	56	2
		Lead, Pb	mg/kg	1	19	13	36	43 ②
		Zinc, Zn	mg/kg	2	27	18	39	41 ②
SE182724.019	LB154675.024	Arsenic, As	mg/kg	1	4	6	49	30
		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
		Chromium, Cr	mg/kg	0.3	8.5	10	35	18
		Copper, Cu	mg/kg	0.5	11	11	35	6
		Nickel, Ni	mg/kg	0.5	3.4	3.5	45	4
		Lead, Pb	mg/kg	1	210	57	31	116 ②
		Zinc, Zn	mg/kg	2	54	68	33	24

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182734.001	LB154475.011	Arsenic, As	μg/L	1	1	1	104	0
		Cadmium, Cd	μg/L	0.1	<0.1	<0.1	189	0
		Chromium, Cr	μg/L	1	10	10	25	0
		Copper, Cu	μg/L	1	11	11	24	0
		Lead, Pb	μg/L	1	9	9	26	0
		Nickel, Ni	μg/L	1	3	3	47	2
		Zinc, Zn	μg/L	5	59	60	23	0

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

Trair (Total Tecov	orable riyurodarboria) iir ooli						Wieur	iod. MIL-(AO)-	LI44 Jr 14400	
Original	Duplicate	Parameter		Units	LOR	Original	Duplicate	Criteria %	RPD %	
SE182724.009	LB154679.027	TRH C10-C14		mg/kg	20	<20	0	200	0	
		TRH C15-C28		mg/kg	45	86	67	89	25	
		TRH C29-C36		mg/kg	45	<45	0	200	0	
		TRH C37-C40		mg/kg	100	<100	0	200	0	
		TRH C10-C36 Total	873	mg/kg	110	<110	67	174	0	

23/8/2018 Page 17 of 27

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

TRH (Total Recoverable Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN403

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182724.009	LB154679.027		TRH C10-C40 Total (F bands)	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	0	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	110	80	127	16
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0
SE182724.016	LB154679.025		TRH C10-C14	mg/kg	20	<20	0	200	0
			TRH C15-C28	mg/kg	45	<45	0	200	0
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total	mg/kg	110	<110	0	200	0
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	0	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182724.010	LB154678.015	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1		0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1		0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2		0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.8	3.7	50	1
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.6	5.2	50	8
			d8-toluene (Surrogate)	mg/kg	-	5.8	5.7	50	2
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.6	3.7	50	3
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
SE182724.019	LB154678.032	Monocyclic	Benzene	mg/kg	0.1	<0.1	0	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	0	200 200 200 200 50 50 50 50 200 200 200	0
			Ethylbenzene	mg/kg	0.1	<0.1	0	200	0
			m/p-xylene	mg/kg	0.2	<0.2	0.03	200 200 200 50 50 50 50 200 200 200 200	0
			o-xylene	mg/kg	0.1	<0.1	0.01	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.2	4.57	50	8
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.8	5.84	50	1
			d8-toluene (Surrogate)	mg/kg	-	4.9	4.65	50	4
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.9	5.12	50	5
		Totals	Total Xylenes	mg/kg	0.3	<0.3	0.04	200	0
			Total BTEX	mg/kg	0.6	<0.6	0.04	200	0

VOCs in Water

Method: ME-(AU)-[ENV]AN433

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182733.001	LB154459.020	Monocyclic	Benzene	μg/L	0.5	1.1	1.04	76	7
		Aromatic	Toluene	μg/L	0.5	<0.5	0.13	200	0
			Ethylbenzene	μg/L	0.5	<0.5	0.12	200	0
			m/p-xylene	μg/L	1	<1	0.12	200	0
			o-xylene	μg/L	0.5	<0.5	0.07	200	0
		Polycyclic	Naphthalene	μg/L	0.5	<0.5	0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.4	4.09	30	27
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.1	3.76	30	29
			d8-toluene (Surrogate)	μg/L	-	4.8	5.27	30	10
			Bromofluorobenzene (Surrogate)	μg/L	-	4.5	4.59	30	1
SE182734.001	LB154459.019	Monocyclic	Benzene	μg/L	0.5	<0.5	0.2	200	0
		Aromatic	Toluene	μg/L	0.5	<0.5	0.34	169	0
			Ethylbenzene	μg/L	0.5	<0.5	0.06	200	0
			m/p-xylene	μg/L	1	<1	0	200	0
			o-xylene	μg/L	0.5	<0.5	0	200	0
		Polycyclic	Naphthalene	μg/L	0.5	<0.5	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate) 874	μg/L	-	5.2	4.61	30	11

23/8/2018 Page 18 of 27

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOCs in Water (continued)	p.	Method: ME-(AU)-IENVI/	AN433

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182734.001	LB154459.019	Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.1	4.73	30	7
			d8-toluene (Surrogate)	μg/L	-	4.8	5.27	30	9
			Bromofluorobenzene (Surrogate)	μg/L	-	5.3	5.12	30	3

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182724.010	LB154678.015		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.8	3.7	30	1
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.6	5.2	30	8
			d8-toluene (Surrogate)	mg/kg	-	5.8	5.7	30	2
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.6	3.7	30	3
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE182724.019	LB154678.032		TRH C6-C10	mg/kg	25	<25	0	200	0
			TRH C6-C9	mg/kg	20	<20	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.2	4.57	30	8
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.8	5.84	30	1
			d8-toluene (Surrogate)	mg/kg	-	4.9	4.65	30	4
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.9	5.12	30	5
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	0	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	-0.04	200	0

Volatile Petroleum Hydrocarbons in Water

Method: ME-(AU)-[ENV]AN433

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE182733.001	LB154459.020		TRH C6-C10	μg/L	50	<50	16.74	200	0
			TRH C6-C9	μg/L	40	<40	21.01	199	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.4	4.09	30	27
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.1	3.76	30	29
			d8-toluene (Surrogate)	μg/L	-	4.8	5.27	30	10
			Bromofluorobenzene (Surrogate)	μg/L	-	4.5	4.59	30	1
		VPH F Bands	Benzene (F0)	μg/L	0.5	1.1	1.04	76	7
			TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	15.26	200	0
SE182734.001	LB154459.021		TRH C6-C10	μg/L	50	<50	0	200	0
			TRH C6-C9	μg/L	40	<40	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.5	4.95	30	11
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.6	5.72	30	3
			d8-toluene (Surrogate)	μg/L	-	5.1	5.71	30	11
			Bromofluorobenzene (Surrogate)	μg/L	-	4.5	4.23	30	6
		VPH F Bands	Benzene (F0)	μg/L	0.5	<0.5	0.22	200	0
			TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	-0.69	200	0

875

LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB154426.002	Exchangeable Sodium, Na	mg/kg	2	NA	72.68	80 - 120	105
	Exchangeable Potassium, K	mg/kg	2	NA	238.12	80 - 120	106
	Exchangeable Calcium, Ca	mg/kg	2	NA	692	80 - 120	93
	Exchangeable Magnesium, Mg	mg/kg	2	NA	134.2	80 - 120	100

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB154680.002	Mercury	mg/kg	0.05	0.19	0.2	70 - 130	93

OC Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB154679.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	124
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	112
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	112
		Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	112
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	104
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	80
Su	urrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.17	0.15	40 - 130	111

OP Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB154679.002	Dichlorvos	mg/kg	0.5	1.8	2	60 - 140	90
	Diazinon (Dimpylate)	mg/kg	0.5	1.9	2	60 - 140	94
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.0	2	60 - 140	102
	Ethion	mg/kg	0.2	1.6	2	60 - 140	81
Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	80
	d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	96

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

	Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)						
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB154679.002	Naphthalene	mg/kg	0.1	4.2	4	60 - 140	105
	Acenaphthylene	mg/kg	0.1	4.1	4	60 - 140	103
	Acenaphthene	mg/kg	0.1	4.2	4	60 - 140	105
	Phenanthrene	mg/kg	0.1	4.5	4	60 - 140	112
	Anthracene	mg/kg	0.1	4.1	4	60 - 140	103
	Fluoranthene	mg/kg	0.1	4.9	4	60 - 140	122
	Pyrene	mg/kg	0.1	4.9	4	60 - 140	122
	Benzo(a)pyrene	mg/kg	0.1	4.0	4	60 - 140	100
Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	78
	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	80
	d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	96

PCBs in Soil

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB154679.002	Arochlor 1260	mg/kg	0.2	0.4	0.4	60 - 140	100

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB154726.003	рН	pH Units	0.1	7.4	7.415	98 - 102	100

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Sample Number	Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB154675.002	Arsenic, As		mg/kg	1	350	336.32	79 - 120	103
	Cadmium, Cd		mg/kg	0.3	420	416.6	69 - 131	101
	Chromium, Cr		mg/kg	0.3	30	35.2	80 - 120	85
	Copper, Cu		mg/kg	0.5	320	370.46	80 - 120	85
	Nickel, Ni		mg/kg	0.5	180	210.88	79 - 120	86
	Lead, Pb	976	mg/kg	1	94	107.87	79 - 120	87

23/8/2018 Page 20 of 27

LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Recoverable	Elements in Soil/V	Vaste Solids/Materials by ICPOES (continued)				Method:	ME-(AU)-[ENV	/JAN040/AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	
LB154675.002		Zinc, Zn	mg/kg	2	280	301.27	80 - 121	93
race Metals (Diss	solved) in Water by	ICPMS					Method: ME-(Al	U)-IENVIAI
Sample Number	<u> </u>	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB154475.002		Arsenic, As	μg/L	1	20	20	80 - 120	98
LB 10447 0.002		Cadmium, Cd	µg/L	0.1	19	20	80 - 120	96
		Chromium, Cr	μg/L	1	19	20	80 - 120	96
		Copper, Cu	μg/L	1	20	20	80 - 120	98
		Lead, Pb	μg/L	1	20	20	80 - 120	102
		Nickel, Ni	μg/L	1	19	20	80 - 120	96
		Zinc, Zn	µg/L	5	20	20	80 - 120	102
RH (Total Recove	erable Hydrocarbo	ns) in Soil					Method: ME-(Al	U)-[ENV]AI
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	
LB154679.002		TRH C10-C14	mg/kg	20	30	40	60 - 140	75
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	75
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	75
	TRH F Bands	TRH >C10-C16	mg/kg	25	30	40	60 - 140	75
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	75
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	85
RH (Total Recove	erable Hydrocarbo	ns) in Water				1	Method: ME-(Al	U)-[ENV]A
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recover
LB154392.002		TRH C10-C14	μg/L	50	1100	1200	60 - 140	95
		TRH C15-C28	μg/L	200	1300	1200	60 - 140	112
		TRH C29-C36	μg/L	200	1100	1200	60 - 140	90
	TRH F Bands	TRH >C10-C16	µg/L	60	1200	1200	60 - 140	100
		TRH >C16-C34 (F3)	µg/L	500	1300	1200	60 - 140	109
		TRH >C34-C40 (F4)	μg/L	500	520	600	60 - 140	86
OC's in Soil							Method: ME-(Al	U)-[ENV]AI
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB154678.002	Monocyclic	Benzene	mg/kg	0.1	2.0	2.9	60 - 140	70
	Aromatic	Toluene	mg/kg	0.1	2.5	2.9	60 - 140	87
		Ethylbenzene	mg/kg	0.1	2.1	2.9	60 - 140	71
		m/p-xylene	mg/kg	0.2	4.6	5.8	60 - 140	80
		o-xylene	mg/kg	0.1	2.1	2.9	60 - 140	74
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.3	5	60 - 140	106
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.2	5	60 - 140	103
		d8-toluene (Surrogate)	mg/kg	-	6.2	5	60 - 140	124
		Bromofluorobenzene (Surrogate)	mg/kg	-	5.2	5	60 - 140	104
OCs in Water							Method: ME-(Al	U)-[ENV]AI
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recover
LB154459.002	Monocyclic	Benzene	μg/L	0.5	50	45.45	60 - 140	110
	Aromatic	Toluene	µg/L	0.5	50	45.45	60 - 140	110
		Ethylbenzene	μg/L	0.5	50	45.45	60 - 140	110
		m/p-xylene	μg/L	1	100	90.9	60 - 140	110
		o-xylene	μg/L	0.5	50	45.45	60 - 140	109
	Surrogates	Dibromofluoromethane (Surrogate)	μg/L		3.9	5	60 - 140	77
		d4-1,2-dichloroethane (Surrogate)	μg/L	-	4.2	5	60 - 140	83
		d8-toluene (Surrogate)	μg/L	-	4.7	5	60 - 140	93
		Bromofluorobenzene (Surrogate)	μg/L	-	5.2		60 - 140	104
olatile Petroleum	Hydrocarbons in S						Method: ME-(Al	U)-[ENV]AI
		Parameter	Units	LOR	Result	Expected	Criteria %	Recover
•								
•		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	89
•		TRH C6-C10 TRH C6-C9	mg/kg mg/kg	25 20	<25 <20	24.65	60 - 140 60 - 140	89 78
•	Surrogates	TRH C6-C9 Dibromofluoromethane (Surrogate)	· · · · · · · · · · · · · · · · · · ·		<20 5.3	23.2 5	60 - 140 60 - 140	78 106
Sample Number LB154678.002		TRH C6-C9	mg/kg	20	<20	23.2	60 - 140	78

23/8/2018 Page 21 of 27

877

6.2

5.2

<25

25

mg/kg

mg/kg

mg/kg

5

5

7.25

60 - 140

60 - 140

60 - 140

124

104

117

d8-toluene (Surrogate)

VPH F Bands

Bromofluorobenzene (Surrogate)

TRH C6-C10 minus BTEX (F1)

LABORATORY CONTROL SAMPLES

SE182724 R0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum Hydrocarbons in Water

Method: ME-(AU)-[ENV]AN433

						-,		
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB154459.002		TRH C6-C10	μg/L	50	960	946.63	60 - 140	102
		TRH C6-C9	μg/L	40	790	818.71	60 - 140	96
	Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	4.2	5	60 - 140	84
		d4-1,2-dichloroethane (Surrogate)	μg/L	-	4.2	5	60 - 140	84
		d8-toluene (Surrogate)	μg/L	-	4.9	5	60 - 140	97
		Bromofluorobenzene (Surrogate)	μg/L	-	4.9	5	60 - 140	97
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	μg/L	50	650	639.67	60 - 140	102

878

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE182704.004	LB154385.004	Mercury	mg/L	0.0001	0.0068	<0.0001	0.008	85

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE182724.001	LB154680.004	Mercury	mg/kg	0.05	0.42	0.42	0.2	3 ④

OC Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE182724.005	LB154679.027		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	-	-
			Alpha BHC	mg/kg	0.1	<0.1	-	-
			Lindane	mg/kg	0.1	<0.1	-	-
			Heptachlor	mg/kg	0.1	<0.1	0.2	125
			Aldrin	mg/kg	0.1	<0.1	0.2	122
			Beta BHC	mg/kg	0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	<0.1	0.2	117
			Heptachlor epoxide	mg/kg	0.1	<0.1	-	-
			o,p'-DDE	mg/kg	0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.2	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	<0.2	0.2	109
			Endrin	mg/kg	0.2	<0.2	0.2	125
			o,p'-DDD	mg/kg	0.1	<0.1	-	-
			o,p'-DDT	mg/kg	0.1	<0.1	-	-
			Beta Endosulfan	mg/kg	0.2	<0.2	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	<0.1	0.2	114
			Endosulfan sulphate	mg/kg	0.1	<0.1	-	-
			Endrin Aldehyde	mg/kg	0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	-	-
			Endrin Ketone	mg/kg	0.1	<0.1	-	-
			Isodrin	mg/kg	0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	-	-
			Total CLP OC Pesticides	mg/kg	1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.19	-	124

OP Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

Or 1 condition in	-							alou. IIIE (10) [
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE182724.005	LB154679.027		Dichlorvos	mg/kg	0.5	<0.5	2	84
			Dimethoate	mg/kg	0.5	<0.5	-	-
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	2	90
			Fenitrothion	mg/kg	0.2	<0.2	-	-
			Malathion	mg/kg	0.2	<0.2	-	-
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	2	99
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	-	-
			Bromophos Ethyl	mg/kg	0.2	<0.2	-	-
			Methidathion	mg/kg	0.5	<0.5	-	-
			Ethion	mg/kg	0.2	<0.2	2	76
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	-	-
			Total OP Pesticides*	mg/kg	1.7	<1.7	-	-
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	84
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	-	94

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

QC Sample Number Parameter Units LOR

Method: ME-(AU)-[ENV]AN420

23/8/2018 Page 23 of 27

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

QC Sample	Sample Number	Parameter	Units	LOR	Original	Spike	Recovery%
SE182724.005	LB154679.027	Naphthalene	mg/kg	0.1	<0.1	4	104
		2-methylnaphthalene	mg/kg	0.1	<0.1	-	-
		1-methylnaphthalene	mg/kg	0.1	<0.1	-	-
		Acenaphthylene	mg/kg	0.1	<0.1	4	102
		Acenaphthene	mg/kg	0.1	<0.1	4	106
		Fluorene	mg/kg	0.1	<0.1	-	-
		Phenanthrene	mg/kg	0.1	0.1	4	117
		Anthracene	mg/kg	0.1	<0.1	4	113
		Fluoranthene	mg/kg	0.1	0.2	4	109
		Pyrene	mg/kg	0.1	0.2	4	111
		Benzo(a)anthracene	mg/kg	0.1	<0.1	-	-
		Chrysene	mg/kg	0.1	<0.1	-	-
		Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	-	-
		Benzo(k)fluoranthene	mg/kg	0.1	<0.1	-	-
		Benzo(a)pyrene	mg/kg	0.1	<0.1	4	91
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	-	-
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	-	-
		Benzo(ghi)perylene	mg/kg	0.1	<0.1	-	-
		Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	-	-
		Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	-	-
		Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	-	-
		Total PAH (18)	mg/kg	0.8	<0.8	-	-
	Surrog	ates d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	-	82
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	84
		d14-p-terphenyl (Surrogate)	ma/ka	_	0.4	_	94

PCBs in Soil

Method: ME-(AU)-[ENV]AN420

QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE182724.005	LB154679.025		Arochlor 1016	mg/kg	0.2	<0.2	-	-
			Arochlor 1221	mg/kg	0.2	<0.2	-	-
			Arochlor 1232	mg/kg	0.2	<0.2	-	-
			Arochlor 1242	mg/kg	0.2	<0.2	-	-
			Arochlor 1248	mg/kg	0.2	<0.2	-	-
			Arochlor 1254	mg/kg	0.2	<0.2	-	-
			Arochlor 1260	mg/kg	0.2	<0.2	0.4	121
			Arochlor 1262	mg/kg	0.2	<0.2	-	-
			Arochlor 1268	mg/kg	0.2	<0.2	-	-
			Total PCBs (Arochlors)	mg/kg	1	<1	-	-
	S	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	-	126

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE182724.001	LB154675.004	Arsenic, As	mg/kg	1	49	15	50	66 ④
		Cadmium, Cd	mg/kg	0.3	47	0.5	50	92
		Chromium, Cr	mg/kg	0.3	76	34	50	84
		Copper, Cu	mg/kg	0.5	99	50	50	98
		Nickel, Ni	mg/kg	0.5	100	59	50	86
		Lead, Pb	mg/kg	1	150	76	50	138 ④
		Zinc, Zn	mg/kg	2	220	140	50	174 ④

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE182704.004	LB154475.004	Arsenic, As	μg/L	1	27	4	20	114
		Cadmium, Cd	μg/L	0.1	20	<0.1	20	100
		Chromium, Cr	μg/L	1	20	<1	20	95
		Copper, Cu	μg/L	1	17	2	20	74
		Lead, Pb	μg/L	1	22	2	20	101
		Nickel, Ni	μg/L	1	23	4	20	92
		Zinc, Zn	μg/L	5	28	10	20	89

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

QC Sample Sample Number Parameter Units LOR

23/8/2018 Page 24 of 27

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

TRH (Total Recoverable Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN403

QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE182724.002	LB154679.026		TRH C10-C14	mg/kg	20	32	40	80
			TRH C15-C28	mg/kg	45	270	40	-205 ⑨
			TRH C29-C36	mg/kg	45	<45	40	100
			TRH C37-C40	mg/kg	100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	310	-	-
			TRH C10-C40 Total (F bands)	mg/kg	210	350	-	-
		TRH F Bands	TRH >C10-C16	mg/kg	25	50	40	48 ⑨
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	48	-	-
			TRH >C16-C34 (F3)	mg/kg	90	300	40	-220 ⑨
			TRH >C34-C40 (F4)	mg/kg	120	<120	-	-

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery%
LB154678.004	Monocyclic	Benzene	mg/kg	0.1	2.5	<0.1	2.9	85
	Aromatic	Toluene	mg/kg	0.1	2.9	<0.1	2.9	99
		Ethylbenzene	mg/kg	0.1	1.9	<0.1	2.9	64
		m/p-xylene	mg/kg	0.2	4.2	<0.2	5.8	72
		o-xylene	mg/kg	0.1	2.0	<0.1	2.9	68
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.4	4.1	-	109
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.9	4.1	-	99
		d8-toluene (Surrogate)	mg/kg	-	6.3	4.4	-	126
		Bromofluorobenzene (Surrogate)	mg/kg	-	5.1	4.2	-	102
	Totals	Total Xylenes	mg/kg	0.3	6.2	<0.3	-	-
		Total BTEX	mg/kg	0.6	13	<0.6	-	-
	•	Aromatic Surrogates	LB154678.004 Monocyclic Benzene Aromatic Toluene Ethylbenzene m/p-xylene o-xylene O-xylene Surrogates Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Sylenes	LB154678.004 Monocyclic Benzene mg/kg Aromatic Toluene mg/kg Ethylbenzene mg/kg m/p-xylene mg/kg o-xylene mg/kg Surrogates Dibromofluoromethane (Surrogate) mg/kg d4-1,2-dichloroethane (Surrogate) mg/kg d8-toluene (Surrogate) mg/kg Bromofluorobenzene (Surrogate) mg/kg Totals Total Xylenes mg/kg	LB154678.004 Monocyclic Benzene mg/kg 0.1 Aromatic Toluene mg/kg 0.1 Ethylbenzene mg/kg 0.1 m/p-xylene mg/kg 0.2 o-xylene mg/kg 0.1 Surrogates Dibromofluoromethane (Surrogate) mg/kg - d4-1,2-dichloroethane (Surrogate) mg/kg - d8-toluene (Surrogate) mg/kg - Bromofluorobenzene (Surrogate) mg/kg - Totals Total Xylenes mg/kg 0.3	LB154678.004 Monocyclic Aromatic Benzene mg/kg 0.1 2.5 Ethylbenzene mg/kg 0.1 1.9 Ethylbenzene mg/kg 0.1 1.9 m/p-xylene mg/kg 0.2 4.2 o-xylene mg/kg 0.1 2.0 Surrogates Dibromofluoromethane (Surrogate) mg/kg - 5.4 d4-1,2-dichloroethane (Surrogate) mg/kg - 4.9 d8-toluene (Surrogate) mg/kg - 6.3 Bromofluorobenzene (Surrogate) mg/kg - 5.1 Totals Total Xylenes mg/kg 0.3 6.2	LB154678.004 Monocyclic Aromatic Benzene mg/kg 0.1 2.5 <0.1 Ethylbenzene mg/kg 0.1 1.9 <0.1	LB154678.004 Monocyclic Aromatic Benzene mg/kg 0.1 2.5 <0.1 2.9 Ethylbenzene mg/kg 0.1 1.9 <0.1

VOCs in Water

Method: ME-(AU)-[ENV]AN433

QC Sample	Sample Number	r	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE182724.022	LB154459.022	Monocyclic	Benzene	μg/L	0.5	44	<0.5	45.45	96
		Aromatic	Toluene	μg/L	0.5	46	<0.5	45.45	101
			Ethylbenzene	μg/L	0.5	48	<0.5	45.45	105
			m/p-xylene	μg/L	1	88	<1	90.9	97
			o-xylene	μg/L	0.5	40	<0.5	45.45	87
		Polycyclic	Naphthalene	μg/L	0.5	51	<0.5	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L		4.8	6.0	-	95
			d4-1,2-dichloroethane (Surrogate)	μg/L		4.6	5.7	-	93
			d8-toluene (Surrogate)	μg/L		4.7	5.6	-	94
			Bromofluorobenzene (Surrogate)	μg/L	-	4.6	4.8	-	92
Velette Detector	m Uhadroondono in C	N=0					14-4	-4- NET (ALI	N IENNAANIAS

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE182724.001	LB154678.004		TRH C6-C10	mg/kg	25	<25	<25	24.65	97
			TRH C6-C9	mg/kg	20	<20	<20	23.2	81
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.4	4.1	-	109
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.9	4.1	-	99
			d8-toluene (Surrogate)	mg/kg	-	6.3	4.4	-	126
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.1	4.2	-	102
		VPH F	Benzene (F0)	mg/kg	0.1	2.5	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	7.25	131

Volatile Petroleum Hydrocarbons in Water

Method: ME-(AU)-[ENV]AN433

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE182724.022	LB154459.022		TRH C6-C10	μg/L	50	820	<50	946.63	86
			TRH C6-C9	μg/L	40	680	<40	818.71	82
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	4.8	6.0	-	95
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	4.6	5.7	-	93
			d8-toluene (Surrogate)	μg/L	-	4.7	5.6	-	94
			Bromofluorobenzene (Surrogate)	μg/L	-	4.6	4.8	-	92
		VPH F	Benzene (F0)	μg/L	0.5	44	<0.5	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	μg/L	50	550	<50	639.67	86

MATRIX SPIKE DUPLICATES

SE182724 R0

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = $100 \times SDL / Mean + LR$

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

QC Sample Sample Number Parameter Units LOR

FOOTNOTES

SE182724 R0

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
 QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- © LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- © LOR was raised due to high conductivity of the sample (required dilution).
- † Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

23/8/2018 Page 27 of 27

STATEMENT OF QA/QC **PERFORMANCE**

CLIENT DETAILS LABORATORY DETAILS

Chris Sordy **Huong Crawford** Manager Contact

EI AUSTRALIA SGS Alexandria Environmental Client Laboratory Address **SUITE 6.01** Address Unit 16, 33 Maddox St

55 MILLER STREET Alexandria NSW 2015

PYRMONT NSW 2009

61 2 95160722 +61 2 8594 0400 Telephone Telephone (Not specified) +61 2 8594 0499 Facsimile Facsimile

christopher.sordy@eiaustralia.com.au au.environmental.sydney@sgs.com Email Email

E23915-E02 - 242-244 Young St Waterloo SE183173 R0 SGS Reference Project E23915-E02 28 Aug 2018 Order Number Date Received

04 Sep 2018 Samples Date Reported

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client.

This QA/QC Statement must be read in conjunction with the referenced Analytical Report.

The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date pH in water 3 items

Analysis Date pH in water 3 items

SAMPLE SUMMARY

Samples clearly labelled Yes Complete documentation received Yes Ice Bricks Sample container provider SGS Sample cooling method 7 Water Samples received in correct containers Yes Sample counts by matrix 28/8/2018 COC Date documentation received Type of documentation received Samples received in good order Samples received without headspace Yes Sample temperature upon receipt 7.2°C Sufficient sample for analysis Yes Standard Turnaround time requested

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f+61 2 8594 0499

www.sgs.com.au

Member of the SGS Group 884 Page 1 of 15

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Conductivity and TDS by		00 B-f	Commission	Donational	Evitua etian Bura	Evitageted		ME-(AU)-[ENV]A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M-1	SE183173.001	LB155386	24 Aug 2018	28 Aug 2018	21 Sep 2018	29 Aug 2018	21 Sep 2018	29 Aug 2018
BH9M-1	SE183173.002	LB155386	24 Aug 2018	28 Aug 2018	21 Sep 2018	29 Aug 2018	21 Sep 2018	29 Aug 2018
3H10M-1	SE183173.003	LB155386	24 Aug 2018	28 Aug 2018	21 Sep 2018	29 Aug 2018	21 Sep 2018	29 Aug 2018
lercury (dissolved) in W	ater						Method: ME-(AU)-[ENV	/JAN311(Perth)/A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M-1	SE183173.001	LB155391	24 Aug 2018	28 Aug 2018	21 Sep 2018	30 Aug 2018	21 Sep 2018	30 Aug 2018
BH9M-1	SE183173.002	LB155391	24 Aug 2018	28 Aug 2018	21 Sep 2018	30 Aug 2018	21 Sep 2018	30 Aug 2018
BH10M-1	SE183173.003	LB155391	24 Aug 2018	28 Aug 2018	21 Sep 2018	30 Aug 2018	21 Sep 2018	30 Aug 2018
GW-QD1	SE183173.004	LB155391	24 Aug 2018	28 Aug 2018	21 Sep 2018	30 Aug 2018	21 Sep 2018	30 Aug 2018
BHR-1	SE183173.005	LB155391	24 Aug 2018	28 Aug 2018	21 Sep 2018	30 Aug 2018	21 Sep 2018	30 Aug 2018
letals in Water (Dissolve	ed) by ICPOES						Method:	ME-(AU)-[ENV]A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H1M-1	SE183173.001	LB155413	24 Aug 2018	28 Aug 2018	20 Feb 2019	30 Aug 2018	20 Feb 2019	30 Aug 2018
3H9M-1	SE183173.002	LB155413	24 Aug 2018	28 Aug 2018	20 Feb 2019	30 Aug 2018	20 Feb 2019	30 Aug 2018
3H10M-1	SE183173.003	LB155413	24 Aug 2018	28 Aug 2018	20 Feb 2019	30 Aug 2018	20 Feb 2019	30 Aug 2018
AH (Polynuclear Aroma	atic Hydrocarbons) in Water					-	Method:	ME-(AU)-[ENV]A
• •		OC Bot	Sampled	Possived	Extraction Duo	Extracted		
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due		Analysis Due	Analysed
BH1M-1	SE183173.001	LB155396	24 Aug 2018	28 Aug 2018	31 Aug 2018	30 Aug 2018	09 Oct 2018	03 Sep 2018
BH9M-1	SE183173.002	LB155396	24 Aug 2018	28 Aug 2018	31 Aug 2018	30 Aug 2018	09 Oct 2018	03 Sep 2018
3H10M-1	SE183173.003	LB155396	24 Aug 2018	28 Aug 2018	31 Aug 2018	30 Aug 2018	09 Oct 2018	03 Sep 2018
GW-QD1	SE183173.004	LB155396	24 Aug 2018	28 Aug 2018	31 Aug 2018	30 Aug 2018 30 Aug 2018	09 Oct 2018	03 Sep 2018 03 Sep 2018
BHR-1	SE183173.005	LB155396	24 Aug 2018	28 Aug 2018	31 Aug 2018	30 Aug 2016	09 Oct 2018	
H in water								ME-(AU)-[ENV]A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H1M-1	SE183173.001	LB155386	24 Aug 2018	28 Aug 2018	25 Aug 2018	29 Aug 2018†	25 Aug 2018	29 Aug 2018
3H9M-1	SE183173.002	LB155386	24 Aug 2018	28 Aug 2018	25 Aug 2018	29 Aug 2018†	25 Aug 2018	29 Aug 2018
BH10M-1	SE183173.003	LB155386	24 Aug 2018	28 Aug 2018	25 Aug 2018	29 Aug 2018†	25 Aug 2018	29 Aug 2018
otal Phenolics in Water							Method:	ME-(AU)-[ENV]A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H1M-1	SE183173.001	LB155620	24 Aug 2018	28 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	03 Sep 2018
3H9M-1	SE183173.002	LB155620	24 Aug 2018	28 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	03 Sep 2018
3H10M-1	SE183173.003	LB155620	24 Aug 2018	28 Aug 2018	21 Sep 2018	03 Sep 2018	21 Sep 2018	03 Sep 2018
race Metals (Dissolved)	in Water by ICPMS						Method:	ME-(AU)-[ENV]A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M-1	SE183173.001	LB155415	24 Aug 2018	28 Aug 2018	20 Feb 2019	30 Aug 2018	20 Feb 2019	-
	·			-		-		30 Aug 2018
3H9M-1 3H10M-1	SE183173.002 SE183173.003	LB155415 LB155415	24 Aug 2018	28 Aug 2018	20 Feb 2019 20 Feb 2019	30 Aug 2018	20 Feb 2019 20 Feb 2019	30 Aug 2018
GW-QD1	SE183173.003	LB155415	24 Aug 2018	28 Aug 2018	20 Feb 2019	30 Aug 2018	20 Feb 2019	30 Aug 2018
BHR-1	SE183173.005	LB155415	24 Aug 2018 24 Aug 2018	28 Aug 2018 28 Aug 2018	20 Feb 2019	30 Aug 2018 30 Aug 2018	20 Feb 2019	30 Aug 2018 30 Aug 2018
		LD 133413	24 Aug 2010	20 Aug 2010	201 60 2019	30 Aug 2010		
	Hydrocarbons) in Water							ME-(AU)-[ENV]A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H1M-1	SE183173.001	LB155396	24 Aug 2018	28 Aug 2018	31 Aug 2018	30 Aug 2018	09 Oct 2018	31 Aug 2018
BH9M-1	SE183173.002	LB155396	24 Aug 2018	28 Aug 2018	31 Aug 2018	30 Aug 2018	09 Oct 2018	31 Aug 2018
3H10M-1	SE183173.003	LB155396	24 Aug 2018	28 Aug 2018	31 Aug 2018	30 Aug 2018	09 Oct 2018	31 Aug 2018
GW-QD1	SE183173.004	LB155396	24 Aug 2018	28 Aug 2018	31 Aug 2018	30 Aug 2018	09 Oct 2018	31 Aug 201
BHR-1	SE183173.005	LB155396	24 Aug 2018	28 Aug 2018	31 Aug 2018	30 Aug 2018	09 Oct 2018	31 Aug 2018
)							Method:	ME-(AU)-[ENV]A
				Received	Extraction Due	Extracted	Analysis Due	Analysed
OCs in Water	Sample No.	QC Ref	Sampled	Received				
OCs in Water Sample Name	Sample No. SE183173.001	QC Ref LB155586	24 Aug 2018	28 Aug 2018	31 Aug 2018	31 Aug 2018	10 Oct 2018	04 Sep 2018
OCs in Water Sample Name BH1M-1			•		31 Aug 2018 31 Aug 2018	31 Aug 2018 31 Aug 2018	10 Oct 2018 10 Oct 2018	04 Sep 2018 04 Sep 2018
OCs in Water Sample Name BH1M-1 BH9M-1	SE183173.001	LB155586	24 Aug 2018	28 Aug 2018				
OCs in Water Sample Name 3H1M-1 3H9M-1 3H10M-1	SE183173.001 SE183173.002	LB155586 LB155586	24 Aug 2018 24 Aug 2018	28 Aug 2018 28 Aug 2018	31 Aug 2018	31 Aug 2018	10 Oct 2018	04 Sep 2018 04 Sep 2018
OCs in Water Sample Name BH1M-1 BH9M-1 BH10M-1 GW-QD1 BHR-1	SE183173.001 SE183173.002 SE183173.003	LB155586 LB155586 LB155586	24 Aug 2018 24 Aug 2018 24 Aug 2018	28 Aug 2018 28 Aug 2018 28 Aug 2018	31 Aug 2018 31 Aug 2018	31 Aug 2018 31 Aug 2018	10 Oct 2018 10 Oct 2018	04 Sep 2018
OCs in Water Sample Name 3H1M-1 3H9M-1 3H10M-1 GW-QD1	SE183173.001 SE183173.002 SE183173.003 SE183173.004	LB155586 LB155586 LB155586 LB155586	24 Aug 2018 24 Aug 2018 24 Aug 2018 24 Aug 2018	28 Aug 2018 28 Aug 2018 28 Aug 2018 28 Aug 2018	31 Aug 2018 31 Aug 2018 31 Aug 2018	31 Aug 2018 31 Aug 2018 31 Aug 2018	10 Oct 2018 10 Oct 2018 10 Oct 2018	04 Sep 2018 04 Sep 2018 04 Sep 2018

4/9/2018 Page 2 of 15

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Volatile Petroleum Hydrocarbons in Water

Method: ME-(AU)-[ENV]AN433

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M-1	SE183173.001	LB155586	24 Aug 2018	28 Aug 2018	31 Aug 2018	31 Aug 2018	10 Oct 2018	04 Sep 2018
BH9M-1	SE183173.002	LB155586	24 Aug 2018	28 Aug 2018	31 Aug 2018	31 Aug 2018	10 Oct 2018	04 Sep 2018
BH10M-1	SE183173.003	LB155586	24 Aug 2018	28 Aug 2018	31 Aug 2018	31 Aug 2018	10 Oct 2018	04 Sep 2018
GW-QD1	SE183173.004	LB155586	24 Aug 2018	28 Aug 2018	31 Aug 2018	31 Aug 2018	10 Oct 2018	04 Sep 2018
BHR-1	SE183173.005	LB155586	24 Aug 2018	28 Aug 2018	31 Aug 2018	31 Aug 2018	10 Oct 2018	04 Sep 2018
GWQTB1	SE183173.006	LB155586	24 Aug 2018	28 Aug 2018	31 Aug 2018	31 Aug 2018	10 Oct 2018	04 Sep 2018
GWQTS1	SE183173.007	LB155586	24 Aug 2018	28 Aug 2018	31 Aug 2018	31 Aug 2018	10 Oct 2018	04 Sep 2018

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN420

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH1M-1	SE183173.001	%	40 - 130%	64
	BH9M-1	SE183173.002	%	40 - 130%	72
	BH10M-1	SE183173.003	%	40 - 130%	70
d14-p-terphenyl (Surrogate)	BH1M-1	SE183173.001	%	40 - 130%	92
	BH9M-1	SE183173.002	%	40 - 130%	84
	BH10M-1	SE183173.003	%	40 - 130%	88
d5-nitrobenzene (Surrogate)	BH1M-1	SE183173.001	%	40 - 130%	50
	BH9M-1	SE183173.002	%	40 - 130%	60
	BH10M-1	SE183173.003	%	40 - 130%	62

VOCs in Water

Method: ME-(AU)-[ENV]AN433

VOCS III WALEI				Mediod. ME-(AO)-[ENV]AI		
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %	
Bromofluorobenzene (Surrogate)	BH1M-1	SE183173.001	%	40 - 130%	105	
	BH9M-1	SE183173.002	%	40 - 130%	106	
	BH10M-1	SE183173.003	%	40 - 130%	106	
	GW-QD1	SE183173.004	%	40 - 130%	86	
	BHR-1	SE183173.005	%	40 - 130%	88	
	GWQTB1	SE183173.006	%	40 - 130%	92	
	GWQTS1	SE183173.007	%	40 - 130%	92	
d4-1,2-dichloroethane (Surrogate)	BH1M-1	SE183173.001	%	40 - 130%	100	
	BH9M-1	SE183173.002	%	40 - 130%	98	
	BH10M-1	SE183173.003	%	40 - 130%	100	
	GW-QD1	SE183173.004	%	40 - 130%	111	
	BHR-1	SE183173.005	%	40 - 130%	120	
	GWQTB1	SE183173.006	%	40 - 130%	112	
	GWQTS1	SE183173.007	%	40 - 130%	95	
d8-toluene (Surrogate)	BH1M-1	SE183173.001	%	40 - 130%	106	
	BH9M-1	SE183173.002	%	40 - 130%	106	
	BH10M-1	SE183173.003	%	40 - 130%	109	
	GW-QD1	SE183173.004	%	40 - 130%	96	
	BHR-1	SE183173.005	%	40 - 130%	106	
	GWQTB1	SE183173.006	%	40 - 130%	98	
	GWQTS1	SE183173.007	%	40 - 130%	91	
Dibromofluoromethane (Surrogate)	BH1M-1	SE183173.001	%	40 - 130%	91	
	BH9M-1	SE183173.002	%	40 - 130%	89	
	BH10M-1	SE183173.003	%	40 - 130%	91	
	GW-QD1	SE183173.004	%	40 - 130%	98	
	BHR-1	SE183173.005	%	40 - 130%	107	
	GWQTB1	SE183173.006	%	40 - 130%	97	
	GWQTS1	SE183173.007	%	40 - 130%	83	

Volatile Petroleum Hydrocarbons in Water

Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH1M-1	SE183173.001	%	40 - 130%	97
	BH9M-1	SE183173.002	%	40 - 130%	93
	BH10M-1	SE183173.003	%	40 - 130%	85
	GW-QD1	SE183173.004	%	40 - 130%	86
	BHR-1	SE183173.005	%	40 - 130%	88
d4-1,2-dichloroethane (Surrogate)	BH1M-1	SE183173.001	%	60 - 130%	110
	BH9M-1	SE183173.002	%	60 - 130%	112
	BH10M-1	SE183173.003	%	60 - 130%	110
	GW-QD1	SE183173.004	%	60 - 130%	111
	BHR-1	SE183173.005	%	60 - 130%	120
d8-toluene (Surrogate)	BH1M-1	SE183173.001	%	40 - 130%	89
	BH9M-1	SE183173.002	%	40 - 130%	99
	BH10M-1	SE183173.003	%	40 - 130%	94
	GW-QD1	SE183173.004	%	40 - 130%	96
	BHR-1	SE183173.005	%	40 - 130%	106
Dibromofluoromethane (Surrogate)	BH1M-1	SE183173.001	%	40 - 130%	99
	BH9M-1	SE183173.002	%	40 - 130%	99
	BH10M-1	SE183173.003	%	40 - 130%	98
	GW-QD1 887	SE183173.004	%	40 - 130%	98

4/9/2018 Page 4 of 15

SURROGATES

SE183173 R0

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Water (continued)

Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Dibromofluoromethane (Surrogate)	BHR-1	SE183173.005	%	40 - 130%	107

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Conductivity and TDS by Calculation - Water

Method: ME-(AU)-[ENV]AN106

Sample Number	Parameter	Units	LOR	Result
LB155386.001	Conductivity @ 25 C	μS/cm	2	<2

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Sample Number	Parameter	Units	LOR	Result
LB155391.001	Mercury	mg/L	0.0001	<0.0001

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result
LB155396.001	Naphthalene	μg/L	0.1	<0.1
	2-methylnaphthalene	μg/L	0.1	<0.1
	1-methylnaphthalene	μg/L	0.1	<0.1
	Acenaphthylene	μg/L	0.1	<0.1
	Acenaphthene	μg/L	0.1	<0.1
	Fluorene	μg/L	0.1	<0.1
	Phenanthrene	μg/L	0.1	<0.1
	Anthracene	μg/L	0.1	<0.1
	Fluoranthene	μg/L	0.1	<0.1
	Pyrene	μg/L	0.1	<0.1
	Benzo(a)anthracene	μg/L	0.1	<0.1
	Chrysene	μg/L	0.1	<0.1
	Benzo(a)pyrene	μg/L	0.1	<0.1
	Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1
	Dibenzo(ah)anthracene	μg/L	0.1	<0.1
	Benzo(ghi)perylene	μg/L	0.1	<0.1
Surrogates	d5-nitrobenzene (Surrogate)	%	-	68
	2-fluorobiphenyl (Surrogate)	%	-	72
	d14-p-terphenyl (Surrogate)	%	-	90

Total Phenolics in Water

Method: ME-(AU)-[ENV]AN289

Sample Number	Parameter	Units	LOR	Result
LB155620.001	Total Phenols	ma/L	0.05	<0.05

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

Sample Number	Parameter	Units	LOR	Result
LB155415.001	Aluminium, Al	μg/L	5	<5
	Arsenic, As	μg/L	1	<1
	Cadmium, Cd	μg/L	0.1	<0.1
	Chromium, Cr	μg/L	1	<1
	Copper, Cu	μg/L	1	<1
	Lead, Pb	μg/L	1	<1
	Nickel, Ni	μg/L	1	<1
	Zinc, Zn	μg/L	5	<5

TRH (Total Recoverable Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN403

Sample Number	Parameter	Units	LOR	Result
LB155396.001	TRH C10-C14	μg/L	50	<50
	TRH C15-C28	μg/L	200	<200
	TRH C29-C36	μg/L	200	<200
	TRH C37-C40	ug/l	200	<200

VOCs in Water

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB155586.001	Fumigants	2,2-dichloropropane	μg/L	0.5	<0.5
		1,2-dichloropropane	μg/L	0.5	<0.5
		cis-1,3-dichloropropene	μg/L	0.5	<0.5
		trans-1,3-dichloropropene	μg/L	0.5	<0.5
		1,2-dibromoethane (EDB)	μg/L	0.5	<0.5
	Halogenated Aliphatics	Dichlorodifluoromethane (CFC-12) 889	ug/L	5	<5

4/9/2018 Page 6 of 15

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOCs in Water (continued)

Method: ME-(AU)-[ENV]AN433

			11.24	1.00	- "
mple Number	Helene A LAC C C	Parameter	Units	LOR	Result
55586.001	Halogenated Aliphatics	Chloromethane	μg/L	5	<5
		Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3
		Bromomethane	μg/L	10	<10
		Chloroethane	μg/L	5	<5
		Trichlorofluoromethane	μg/L	1	<1
		lodomethane	μg/L	5	<5
		1,1-dichloroethene	μg/L	0.5	<0.5
		Dichloromethane (Methylene chloride)	μg/L	5	<5
		Allyl chloride	μg/L	2	<2
		trans-1,2-dichloroethene	μg/L	0.5	<0.5
		1,1-dichloroethane	μg/L	0.5	<0.5
		cis-1,2-dichloroethene		0.5	<0.5
			μg/L		
		Bromochloromethane	μg/L 	0.5	<0.5
		1,2-dichloroethane	μg/L	0.5	<0.5
		1,1,1-trichloroethane	μg/L	0.5	<0.5
		1,1-dichloropropene	μg/L	0.5	<0.5
		Carbon tetrachloride	μg/L	0.5	<0.5
		Dibromomethane	μg/L	0.5	<0.5
		Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	<0.5
		1,1,2-trichloroethane	μg/L	0.5	<0.5
		1,3-dichloropropane	μg/L	0.5	<0.5
		Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	<0.5
		1,1,2-tetrachloroethane	μg/L	0.5	<0.5
				1	<1
		cis-1,4-dichloro-2-butene	μg/L "		
		1,1,2,2-tetrachloroethane	μg/L	0.5	<0.5
		1,2,3-trichloropropane	μg/L	0.5	<0.5
		trans-1,4-dichloro-2-butene	μg/L	1	<1
		1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5
		Hexachlorobutadiene	μg/L	0.5	<0.5
	Halogenated Aromatics	Chlorobenzene	μg/L	0.5	<0.5
		Bromobenzene	μg/L	0.5	<0.5
		2-chlorotoluene	μg/L	0.5	<0.5
		4-chlorotoluene	μg/L	0.5	<0.5
		1,3-dichlorobenzene	µg/L	0.5	<0.5
		1,4-dichlorobenzene		0.3	<0.3
			μg/L		
		1,2-dichlorobenzene	μg/L 	0.5	<0.5
		1,2,4-trichlorobenzene	μg/L	0.5	<0.5
		1,2,3-trichlorobenzene	μg/L	0.5	<0.5
	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	μg/L	0.5	<0.5
		Styrene (Vinyl benzene)	μg/L	0.5	<0.5
		Isopropylbenzene (Cumene)	μg/L	0.5	<0.5
					<0.5
		n-propylbenzene	μg/L	0.5	
		1,3,5-trimethylbenzene	μg/L	0.5	<0.5
		tert-butylbenzene	μg/L	0.5	<0.5
		1,2,4-trimethylbenzene	μg/L	0.5	<0.5
		sec-butylbenzene	μg/L	0.5	<0.5
		p-isopropyltoluene	μg/L	0.5	<0.5
		n-butylbenzene	μg/L	0.5	<0.5
	Nitrogenous Compounds	Acrylonitrile	μg/L	0.5	<0.5
	Oxygenated Compounds	Acetone (2-propanone)	μg/L	10	<10
	, g	MtBE (Methyl-tert-butyl ether)	μg/L	2	<2
		Vinyl acetate	μg/L	10	<10
		MEK (2-butanone)	μg/L 	10	<10
		MIBK (4-methyl-2-pentanone)	μg/L	5	<5
		2-hexanone (MBK)	μg/L	5	<5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Sulphonated	Carbon disulfide 890	μg/L	2	<2

4/9/2018 Page 7 of 15

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOCs in Water (continued)

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB155586.001	Surrogates	Dibromofluoromethane (Surrogate)	%	<u>-</u>	100
		d4-1,2-dichloroethane (Surrogate)	%	-	114
		d8-toluene (Surrogate)	%	-	106
		Bromofluorobenzene (Surrogate)	%	-	92
	Trihalomethanes	Chloroform (THM)	μg/L	0.5	<0.5
		Bromodichloromethane (THM)	μg/L	0.5	<0.5
		Dibromochloromethane (THM)	μg/L	0.5	<0.5
		Bromoform (THM)	μg/L	0.5	<0.5

Volatile Petroleum Hydrocarbons in Water

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB155586.001		TRH C6-C9	μg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	100
		d4-1,2-dichloroethane (Surrogate)	%	-	114
		d8-toluene (Surrogate)	%	-	106
		Bromofluorobenzene (Surrogate)	%	-	92

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Conductivity and TDS by Calculation - Water

Method: ME-(AU)-[ENV]AN106

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183187.001	LB155386.014	Conductivity @ 25 C	μS/cm	2	3100	3200	15	2

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183192.006	LB155391.014	Mercury	μg/L	0.0001	<0.0001	0.0000	200	40

Total Phenolics in Water

Method: ME-(AU)-[ENV]AN289

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183169.001	LB155620.004	Total Phenols	mg/L	0.05	<0.05	<0.05	200	0

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183173.005	LB155415.012	Arsenic, As	μg/L	1	<1	<1	200	0
		Cadmium, Cd	μg/L	0.1	<0.1	<0.1	200	0
		Chromium, Cr	μg/L	1	<1	<1	200	0
		Copper, Cu	μg/L	1	<1	<1	200	0
		Lead, Pb	μg/L	1	<1	<1	200	0
		Nickel, Ni	μg/L	1	<1	<1	200	0
		Zinc, Zn	μg/L	5	<5	<5	200	0

TRH (Total Recoverable Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN403

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183173.005	LB155396.022		TRH C10-C14	μg/L	50	<50	0	200	0
			TRH C15-C28	μg/L	200	<200	0	200	0
			TRH C29-C36	μg/L	200	<200	0	200	0
			TRH C37-C40	μg/L	200	<200	0	200	0
			TRH C10-C36	μg/L	450	<450	0	200	0
			TRH C10-C40	μg/L	650	<650	0	200	0
		TRH F Bands	TRH >C10-C16	μg/L	60	<60	0	200	0
			TRH >C10-C16 - Naphthalene (F2)	μg/L	60	<60	0	200	0
			TRH >C16-C34 (F3)	μg/L	500	<500	0	200	0
			TRH >C34-C40 (F4)	μg/L	500	<500	0	200	0

VOCs in Water

Method: ME-(AU)-[ENV]AN433

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183169.001	LB155586.023	Fumigants	1,2-dibromoethane (EDB)	μg/L	0.5	<0.5	0	200	0
		Halogenated	1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5	0	200	0
		Monocyclic	Benzene	μg/L	0.5	<0.5	0.04	200	0
		Aromatic	Toluene	μg/L	0.5	<0.5	0.09	200	0
			Ethylbenzene	μg/L	0.5	<0.5	0.02	200	0
			m/p-xylene	μg/L	1	<1	0.1	200	0
			o-xylene	μg/L	0.5	<0.5	0.1	200	0
		Oxygenated	MEK (2-butanone)	μg/L	10	<10	0	200	0
		Compounds	2-hexanone (MBK)	μg/L	5	<5	0	200	0
		Polycyclic	Naphthalene	μg/L	0.5	<0.5	0.04	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	4.8	4.26	30	11
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.3	4.59	30	14
			d8-toluene (Surrogate)	μg/L	-	5.7	4.99	30	12
			Bromofluorobenzene (Surrogate)	μg/L	-	5.6	4.54	30	21
SE183169.003	LB155586.024	Monocyclic	Benzene	μg/L	0.5	<0.5	0.06	200	0
		Aromatic	Toluene	μg/L	0.5	<0.5	0.1	200	0
			Ethylbenzene	μg/L	0.5	<0.5	0.02	200	0
			m/p-xylene	μg/L	1	<1	0.04	200	0
			o-xylene	μg/L	0.5	<0.5	0.02	200	0
		Polycyclic	Naphthalene	μg/L	0.5	<0.5	0.01	200	0
		Surrogates	Dibromofluoromethane (Surrogate)) μg/L	-	4.9	4.9	30	1

4/9/2018 Page 9 of 15

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOCs in Water (continued) Method: ME-(AU)-[ENV]AN433

Original	Duplicate		Parameter	Units	LUR	Originai	Duplicate	Criteria %	RPD %
SE183169.003	LB155586.024	Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.6	5.03	30	10
			d8-toluene (Surrogate)	μg/L	-	4.8	4.77	30	1
			Bromofluorobenzene (Surrogate)	μg/L	-	4.6	4.01	30	13
Volatile Petroleum	Hydrocarbons in Wa	iter					Meth	od: ME-(AU)-	[ENV]AN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183169.001	LB155586.023		TRH C6-C10	μg/L	50	<50	0	200	0
			TRH C6-C9	μg/L	40	<40	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.2	4.26	30	21
			d4-1.2-dichloroethane (Surrogate)	ua/L	_	5.9	4.59	30	25

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE183169.001	LB155586.023		TRH C6-C10	μg/L	50	<50	0	200	0
			TRH C6-C9	μg/L	40	<40	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.2	4.26	30	21
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.9	4.59	30	25
			d8-toluene (Surrogate)	μg/L	-	5.3	4.99	30	5
			Bromofluorobenzene (Surrogate)	μg/L	-	4.8	4.54	30	5
		VPH F Bands	Benzene (F0)	μg/L	0.5	<0.5	0.04	200	0
			TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	-0.35	200	0
SE183169.003	LB155586.024		TRH C6-C10	μg/L	50	<50	0	200	0
			TRH C6-C9	μg/L	40	<40	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	4.9	4.9	30	1
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.6	5.03	30	10
			d8-toluene (Surrogate)	μg/L	-	4.8	4.77	30	1
			Bromofluorobenzene (Surrogate)	μg/L	-	4.6	4.01	30	13
		VPH F Bands	Benzene (F0)	μg/L	0.5	<0.5	0.06	200	0
			TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	-0.24	200	0

LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Conductivity and TDS by Calculation - Water

Method: ME-(AU)-[ENV]AN106

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB155386.002	Conductivity @ 25 C	μS/cm	2	290	303	90 - 110	95

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB155396.002	Naphthalene	μg/L	0.1	32	40	60 - 140	81
	Acenaphthylene	μg/L	0.1	36	40	60 - 140	90
	Acenaphthene	μg/L	0.1	33	40	60 - 140	82
	Phenanthrene	μg/L	0.1	36	40	60 - 140	89
	Anthracene	μg/L	0.1	35	40	60 - 140	87
	Fluoranthene	μg/L	0.1	36	40	60 - 140	89
	Pyrene	μg/L	0.1	37	40	60 - 140	92
	Benzo(a)pyrene	μg/L	0.1	37	40	60 - 140	91
Surrogate	es d5-nitrobenzene (Surrogate)	μg/L	-	0.4	0.5	40 - 130	82
	2-fluorobiphenyl (Surrogate)	μg/L	-	0.5	0.5	40 - 130	90
	d14-p-terphenyl (Surrogate)	μg/L	-	0.5	0.5	40 - 130	94

pH in water

Method: ME-(AU)-[ENV]AN101

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB155386.003	pH**	No unit	-	7.4	7.415	98 - 102	100

Total Phenolics in Water

Method: ME-(AU)-[ENV]AN289

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB155620.002	Total Phenois	mg/L	0.05	0.24	0.25	80 - 120	95

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB155415.002	Aluminium, Al	μg/L	5	18	20	80 - 120	90
	Arsenic, As	μg/L	1	20	20	80 - 120	100
	Cadmium, Cd	μg/L	0.1	19	20	80 - 120	97
	Chromium, Cr	μg/L	1	19	20	80 - 120	97
	Copper, Cu	μg/L	1	19	20	80 - 120	96
	Lead, Pb	μg/L	1	20	20	80 - 120	102
	Nickel, Ni	μg/L	1	19	20	80 - 120	96
	Zinc, Zn	μg/L	5	20	20	80 - 120	101

TRH (Total Recoverable Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN403

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB155396.002	TRH C10-C14	μg/L	50	1100	1200	60 - 140	91
	TRH C15-C28	μg/L	200	1400	1200	60 - 140	116
	TRH C29-C36	μg/L	200	1400	1200	60 - 140	116
TRH F Ba	ands TRH >C10-C16	μg/L	60	1200	1200	60 - 140	96
	TRH >C16-C34 (F3)	μg/L	500	1600	1200	60 - 140	135
	TRH >C34-C40 (F4)	μg/L	500	610	600	60 - 140	102

VOCs in Water

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB155586.002	Halogenated	1,1-dichloroethene		μg/L	0.5	50	45.45	60 - 140	110
	Aliphatics	1,2-dichloroethane		μg/L	0.5	50	45.45	60 - 140	110
		Trichloroethene (Trichloroethylene,TCE)		μg/L	0.5	50	45.45	60 - 140	110
	Halogenated	Chlorobenzene		μg/L	0.5	50	45.45	60 - 140	110
	Monocyclic	Benzene		μg/L	0.5	50	45.45	60 - 140	110
	Aromatic	Toluene		μg/L	0.5	50	45.45	60 - 140	110
		Ethylbenzene		μg/L	0.5	50	45.45	60 - 140	110
		m/p-xylene		μg/L	1	100	90.9	60 - 140	110
		o-xylene		μg/L	0.5	50	45.45	60 - 140	110
	Surrogates	Dibromofluoromethane (Surrogate)		μg/L	-	4.1	5	60 - 140	81
		d4-1,2-dichloroethane (Surrogate)		μg/L	-	4.1	5	60 - 140	83
		d8-toluene (Surrogate)	894	μg/L	-	4.8	5	60 - 140	96

4/9/2018 Page 11 of 15

VPH F Bands

LABORATORY CONTROL SAMPLES

SE183173 R0

4.9

640

50

μg/L

μg/L

5

639.67

60 - 140

60 - 140

97

99

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Bromofluorobenzene (Surrogate)

TRH C6-C10 minus BTEX (F1)

VOCs in Water (continued) Method: ME-(AU)-[ENV]AN									
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %	
LB155586.002	Surrogates	Bromofluorobenzene (Surrogate)	μg/L	-	5.0	5	60 - 140	100	
	Trihalomethan	Chloroform (THM)	μg/L	0.5	50	45.45	60 - 140	109	
Volatile Petroleum H	lydrocarbons in W				N	/lethod: ME-(A	U)-[ENV]AN433		
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %	
LB155586.002		TRH C6-C10	μg/L	50	940	946.63	60 - 140	100	
		TRH C6-C9	μg/L	40	770	818.71	60 - 140	94	
	Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	4.5	5	60 - 140	89	
		d4-1,2-dichloroethane (Surrogate)	μg/L	-	4.4	5	60 - 140	88	
		d8-toluene (Surrogate)	μg/L	-	4.7	5	60 - 140	93	

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE183169.001	LB155391.004	Mercury	mg/L	0.0001	0.0078	<0.0001	0.008	97

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE183169.001	LB155415.004	Aluminium, Al	μg/L	5	240	230	20	79
		Arsenic, As	μg/L	1	21	<1	20	105
		Cadmium, Cd	μg/L	0.1	20	<0.1	20	98
		Chromium, Cr	μg/L	1	20	<1	20	94
		Copper, Cu	μg/L	1	31	14	20	89
		Lead, Pb	μg/L	1	21	<1	20	100
		Nickel, Ni	μg/L	1	22	4	20	91
		Zinc, Zn	μg/L	5	88	69	20	93

VOCs in Water

Method: ME-(AU)-[ENV]AN433

QC Sample	Sample Numbe	r	Parameter	Units	LOR	Original	Spike	Recovery%
SE183169.002	LB155586.025	Monocyclic	Benzene	μg/L	0.5	<0.5	45.45	110
		Aromatic	Toluene	μg/L	0.5	<0.5	45.45	109
			Ethylbenzene	μg/L	0.5	<0.5	45.45	112
			m/p-xylene	μg/L	1	<1	90.9	111
			o-xylene	μg/L	0.5	<0.5	45.45	111
		Polycyclic	Naphthalene	μg/L	0.5	<0.5	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	4.4	-	102
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.0	-	116
			d8-toluene (Surrogate)	µg/L	-	4.5	-	103
			Bromofluorobenzene (Surrogate)	µg/L	-	4.3	-	99

Volatile Petroleum Hydrocarbons in Water

Method: ME-(AU)-[ENV]AN433

QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE183169.002	LB155586.025		TRH C6-C10	μg/L	50	<50	946.63	86
			TRH C6-C9	μg/L	40	<40	818.71	89
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	4.4	-	102
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.0	-	116
			d8-toluene (Surrogate)	μg/L	-	4.5	-	103
			Bromofluorobenzene (Surrogate)	μg/L	-	4.3	-	99
		VPH F	Benzene (F0)	μg/L	0.5	<0.5	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	639.67	80

4/9/2018 Page 13 of 15

MATRIX SPIKE DUPLICATES

SE183173 R0

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

FOOTNOTES

SE183173 R0

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
 QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- © LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- © LOR was raised due to high conductivity of the sample (required dilution).
- † Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

APPENDIX K SafeWork NSW Records

Locked Bag 2906, Lisarow NSW 2252

Customer Experience 13 10 50

ABN 81 913 830 179 | www.safework.nsw.gov.au

Our Ref: D18/155466

17 July 2018

Mr David Rizkalla EI AUSTRALIA Suite 6.01, 55 Miller Street PYRMONT NSW 2009

Dear Mr Rizkalla

RE SITE: 242-244 Young Street, WATERLOO NSW 2017

I refer to your site search request received by SafeWork NSW on 3 July 2018 requesting information on Storage of Hazardous Chemicals for the above site.

Enclosed are copies of the documents that SafeWork NSW holds on record number 35/004633 relating to the storage of Hazardous Chemicals at the abovementioned premises.

For further information or if you have any questions, please call us on 13 10 50 or email licensing@safework.nsw.gov.au

Yours sincerely

Customer Service Officer Customer Experience - Operations SafeWork NSW

Form I

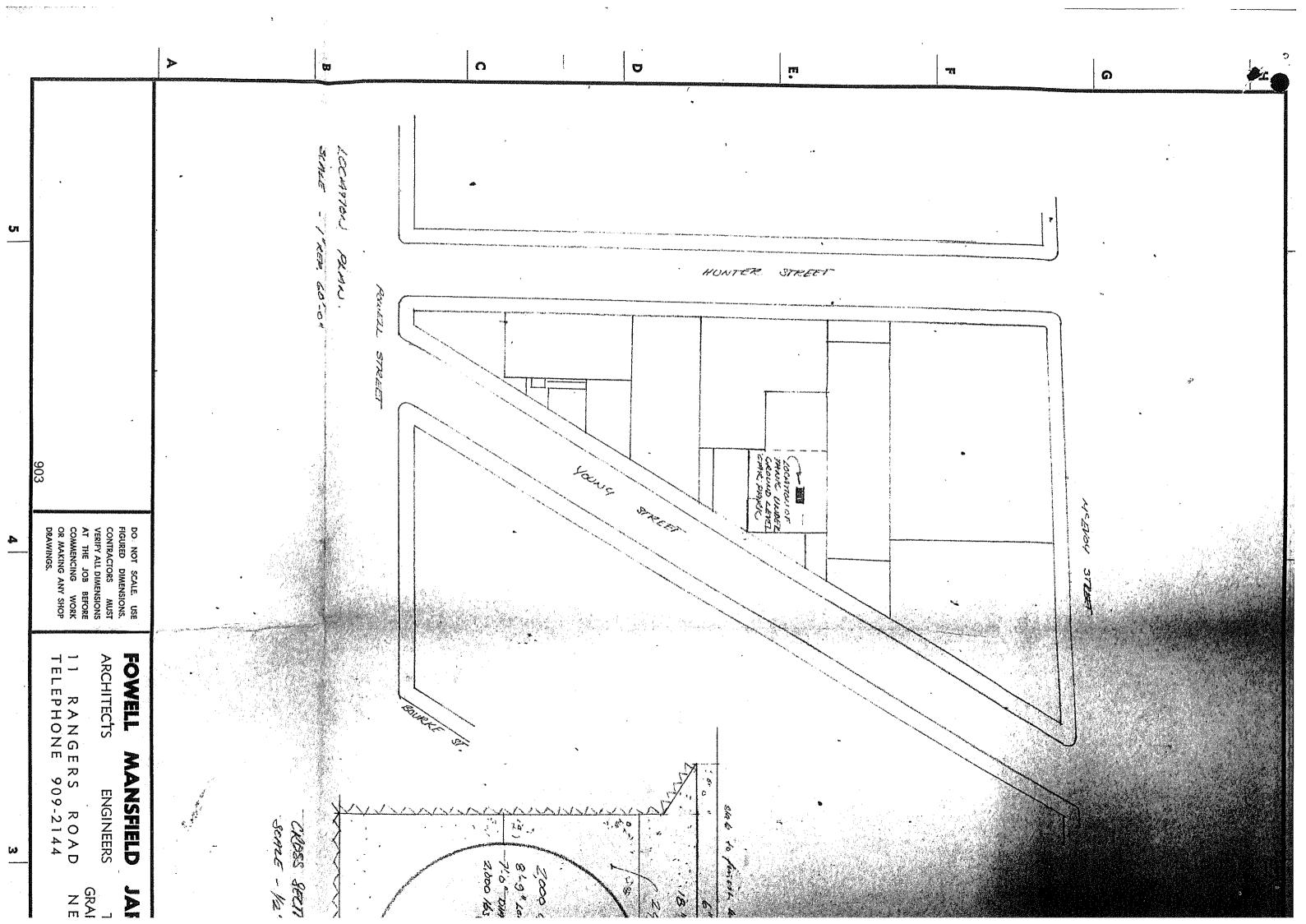
Department of Industrial Relations

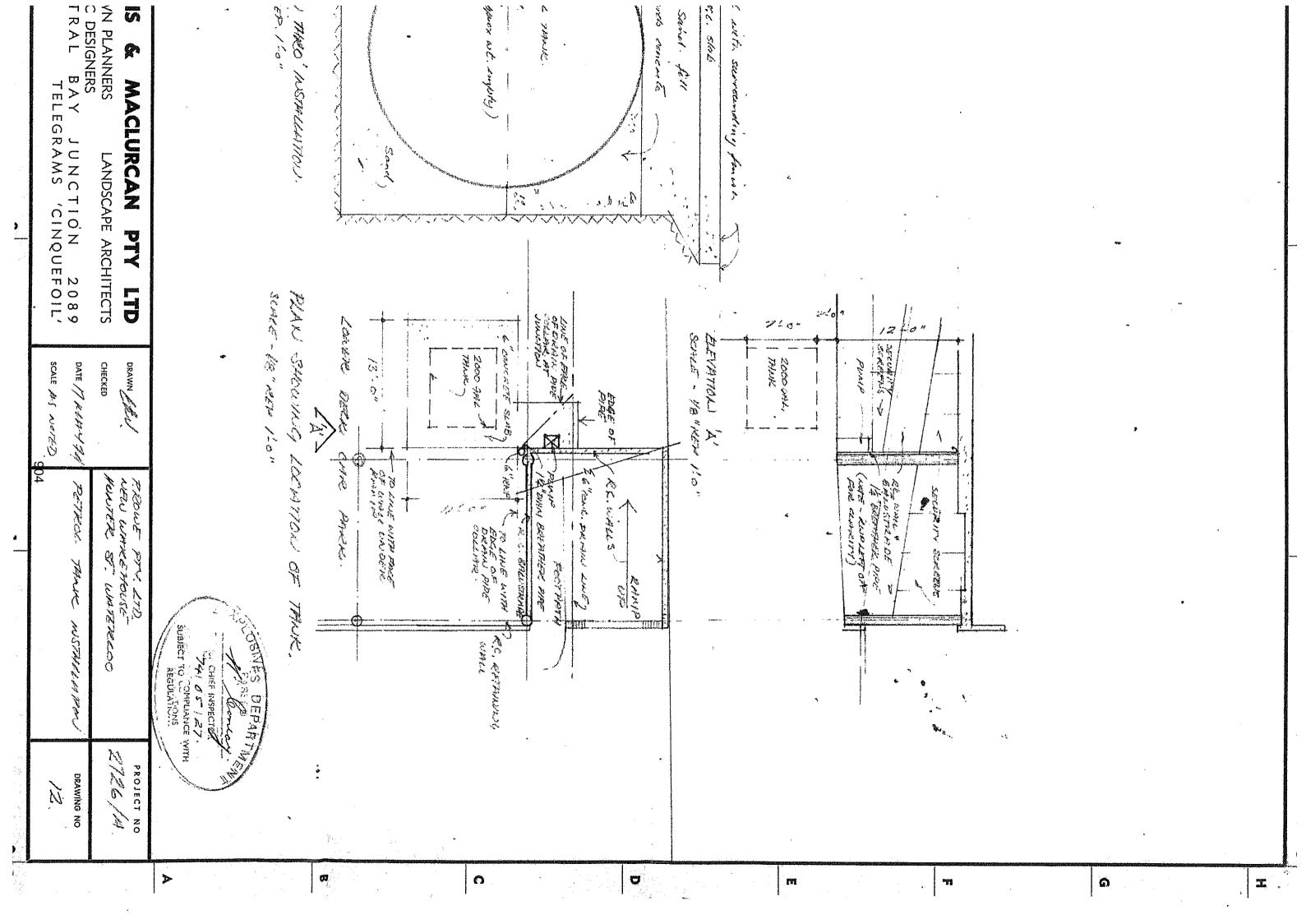
DANGEROUS GOODS ACT, 1975

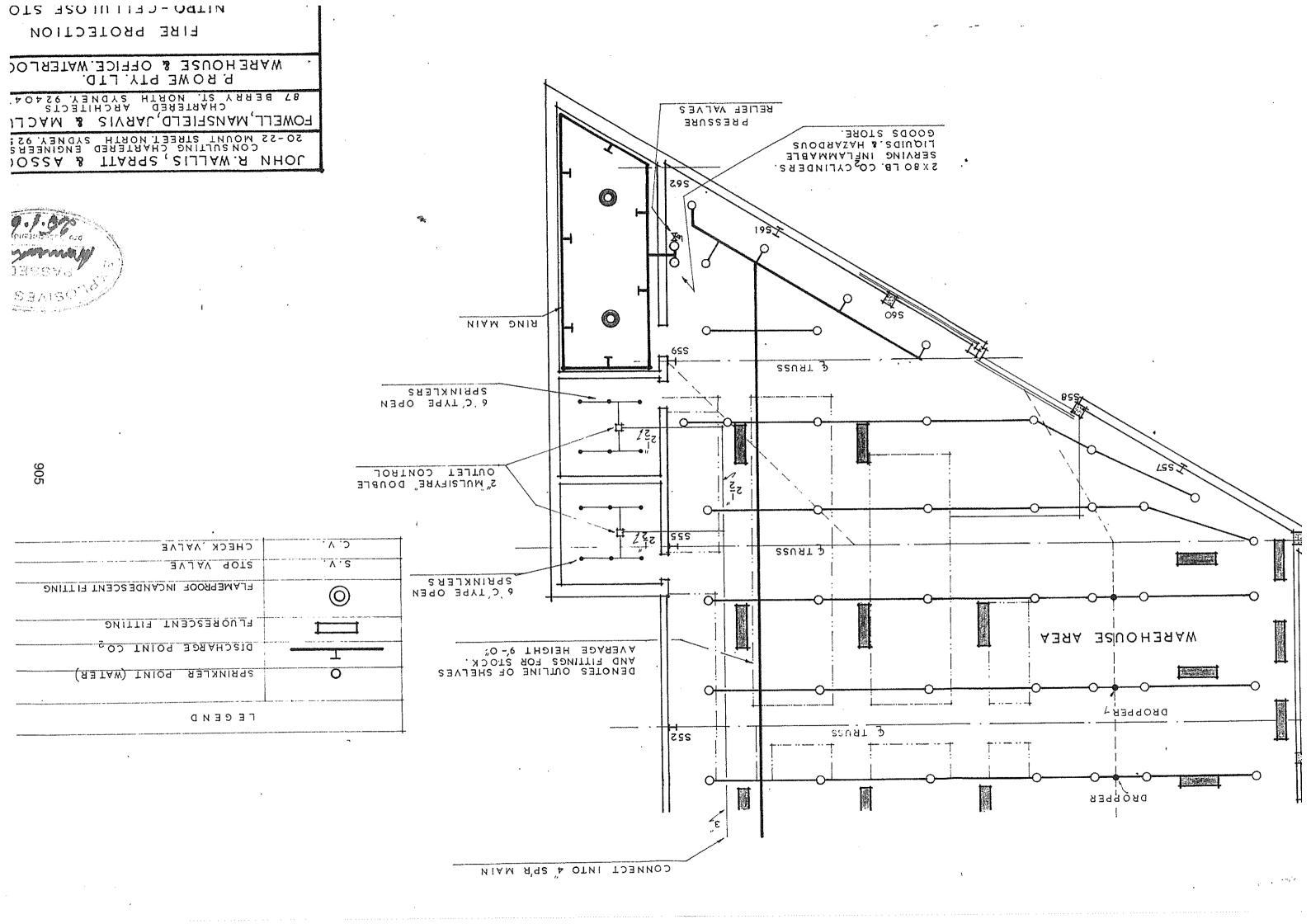
LICENCE No. 35-004633-4

APPLICATION FOR LICENCE (or AMENDMENT or TRANSFER of LICENCE)* FOR THE KEEPING OF DANGEROUS GOODS

(* delete whichever is not required)


FEE: \$15.00 per Depot for new licence.


					\$15.00 for amendment of	or transfer. //ee
	cant in full (see Item ory notes – page 4)	P.	ROWE FABRIC	s PTy	LIMITED	
Trading name of name (if any)		Kon	R FABRICS.			
Postal Address			BOX 206			
<u> </u>			W ATER LOO.	***************************************	.	Postcode 2017
Address of the licensed. (Inc	premises to be cluding Street No.)		WATERLOO	CETS	J	Postcode 2017
	ises (See Item 2 – notes – page 4)	WARE H	DUSE FOR FABRIC.	s and OFFI	CES.	
Telephone num	ber of applicant	STD Code	02	Number	319 3399	
Particulars of ty	pe of depots and maxir	num quantit	ies of dangerous goods to b	***************************************		
Depot	Type of dep (See item 3 - Expl		Storage	D	angerous goods	C & C
number	notes - page		capacity	Pro	duct being stored	Office use only
1	(incleve round	TANK	10,0001	PET	RoC	
2	<u> </u>		,			
3						
4	+					
5						
6				15	TITITION	
7				67	000 - 10	
8					26/2010	
9				9	or CT Man	
10	***************************************	**************************************		13.8		
11	**************************************	adrawranaeur d'Adriki draw d'Andrik draw de anticolo de considera e a conse				<u> </u>
. 12					(Hant)	
	een approved by the loods Branch?	Yes No			vide sketch plan overleat	f.
Have premises	previously been licensed	1? Yes No	/ / /	of previous occup	pier, and licence No. (if k	nown).
Name of oil cor	npany supplying flamm	able liquid (if applicable).	CALTE	文,	
For external ex	plosives magazine(s), pl		nature of applicant Williams	U CHARL BALL	Company Secre	24/1988.
FOR OFFICE		\ \	CERTIFICATE OF INS		July seek	your y
do hereby certif	v that the premises descr	Real A ibed above on and constr	lo comply with the requiren uction for the keeping of da	ients of the Dange	nspector under the Dang crous Goods Act, 1975, and I the nature and in the qu	d the Dangerous Goods
Signature of Ins	- L 1	/_		Date 28- 9	2-89	


APPLICATION FOR: REGISTRATION OF PREMISES) FOR THE KEEPING OF									NO OF	monage			
ATT LICA,	gON POR.	STORE LICENCE INFLAMMABLE LIQUATION OR LICENCE AND/OR DANGEROU								LIQUI	D /		
Name of Oo	ccupier	P. Rowe	Pty L:	imited									
		(Surname)						(First	Names)	<u></u>			
Trading Na	me (if any)												
Postal Addı	ress	Box 3455	G.P	.O., S	YDNEY			Postcode 2001					
Address of premises in depot or de situated	which the	cnr Powe	11 & 1	Young	Street	s, W.	ATERL	RLOO 2017 Postcode					
Occupation		fabrics	& aut	omotiv	e fini	.shes							
Nature of P	remises	warehous	se & o:	ffices	:	-							
Particulars at any one		ion of depots and	maximu	m quanti	ities of ir	nflamm	able liq	uid and/	or dan	gerous	goods t	o be kep	
		PLEASE :	SKETCH	SITE O	N BACK	OR AT	TACH	PLAN					
Depot	Cor	Construction of depots * Inflammable Liquid						Dangerous Goods					
No.	Walls	Roof	Floor	Mineral spirit litres	Mineral oil litres	Class 1 litres	Class 2 litres	Class 3 kg	Class 4 m ³	Class 5 A# litres	Class 5B# litres	Class 9 litres	
1.	brick	concretecon	crete	11.1.11				2500				***************************************	
2	brick	concretecon			400			2500			-		
3	brick	concretecon	crete	<u>10000</u>		00							
4 5	underg	round tank		10000									
<u>5</u> 6													
7													
8						·							
9									······				
10								1701 1100	خ ميماد ا	3001/6	- 5-1115	n h le	
		TOTAL						الرزيد اليها ال ود محوصصوبين-ي	1121	Commission of page 15.	95	-	
* I1	f kept in tanl	ks describe depots	as under	ground o	r abovegr	ound to	anks.		an e	- / # 5	<u>~</u>	/ > (
# I1	nsert water c	apacity of tanks or	cylinder	rs.				(Date)		, , ,	7/0/		
Name of	Company su	pplying inflammat	ole liquid					Receipt	No	_کلا_	19	particular and constructive of the State of	
Have pres	mises previou	usly been licensed?		Υ	es B	4633	(7)					•	
If known	ı, state name	of previous occupi	ier	F	Rowe	e & C	o. Pt	y Lim	ited				
											7.76	,	
		Signature of appl	iicant	-4.0	mon				Da1	te <u>10.</u>	<u>r, r 2</u>		
				V							I: Metr	nsp. op.	
•				~~. ~~								T.	
		e lukur	CERTI	FICATE	OF INSP								
		Act, 1915, do her				nioca s	r oto	docor:1	bein	ig an Ir	spector	r under t	
requirem	ents of that	Act and regulation	ns with r	egard to	its situat	tion and	i store i consti	uescribe	ou above for the	keenii	compl ig of ir	y WITH T Hammah	
liquid and	d/or dangero	us goods in quanti	ty and na	ature spec	cified.					P.14	ب		

INFLAMMABLE LIQUID ACI, 1915

902
Signature of Inspector

